Коэффициент теплового расширения бетона

СНиП 2.06.08-87. Бетонные и железобетонные конструкции гидротехнических сооружений Часть 4

7. РАСЧЕТ ЭЛЕМЕНТОВ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ

КОНСТРУКЦИЙ НА ТЕМПЕРАТУРНЫЕ

И ВЛАЖНОСТНЫЕ ВОЗДЕЙСТВИЯ

7.1. Учет температурных воздействий следует производить:

а) при расчете бетонных конструкций по прочности в соответствии с п. 5.1, а также при расчете их по образованию (недопущению) трещин в случаях, когда нарушение монолитности этих конструкций может изменить статическую схему их работы, вызвать дополнительные внешние силовые воздействия или увеличение противодавления, привести к снижению водонепроницаемости и долговечности конструкции;

б) при расчете статически неопределимых железобетонных конструкций, а также при расчете железобетонных конструкций по образованию (недопущению) трещин в случаях, указанных в п. 6.1;

в) при определении деформаций и перемещений элементов сооружений для назначения конструкций температурных швов и противофильтрационных уплотнений;

г) при назначении температурных режимов, требуемых по условиям возведения сооружения и нормальной его эксплуатации;

д) при расчете тонкостенных железобетонных элементов непрямоугольного сечения (тавровые, кольцевые), контактирующих с грунтом.

Температурные воздействия допускается не учитывать в расчетах тонкостенных конструкций, если обеспечена свобода перемещений этих конструкций.

7.2. При расчете бетонных и железобетонных конструкций следует учитывать температурные воздействия эксплуатационного и строительного периодов.

К температурным воздействиям эксплуатационного периода относятся климатические колебания температуры наружного воздуха, воды в водоемах и эксплуатационный подогрев (или охлаждение) сооружения.

Температурные воздействия строительного периода определяются с учетом экзотермии и других условий твердения бетона, включая конструктивные и технологические мероприятия по регулированию температурного режима конструкции, температуры замыкания строительных швов, полного остывания конструкции до среднемноголетних эксплуатационных температyp, колебаний температуры наружного воздуха и воды в водоемах.

Конкретный перечень температурных воздействий, учитываемых в расчетах бетонных и железобетонных конструкций основных видов гидротехнических сооружений, должен устанавливаться нормами на проектирование соответствующих видов сооружений.

7.3. В расчетах бетонных и железобетонных конструкций гидротехнических сооружений на температурные воздействия при соответствующем обосновании допускается учитывать тепловое влияние солнечной радиации.

7.4. Учет влажностных воздействий при расчете бетонных и железобетонных конструкций должен быть обоснован в зависимости от возможности развития усадки или набухания бетона этих конструкций.

Допускается не учитывать усадку бетона в расчетах:

тонкостенных конструкций, находящихся под водой, контактирующих с водой или засыпанных грунтом, если были предусмотрены меры по предотвращению высыхания бетона в период строительства.

7.5. Температурные и влажностные поля конструкций рассчитываются методами строительной физики с использованием основных положений, принятых для нестационарных процессов.

7.6. Данные о температуре и влажности наружного воздуха и другие климатологические характеристики должны приниматься на основе метеорологических наблюдений в районе строительства. При отсутствии таких наблюдений необходимые сведения следует принимать по СНиП 2.01.01-82 и по официальным документам Государственной гидрометеорологической службы.

Температура воды в водоемах должна определяться на основе специальных расчетов и по аналогам.

7.7. Для сооружений I класса теплофизические характеристики бетона устанавливаются на основании специальных исследований. Для сооружений других классов и при предварительном проектировании сооружений I класса указанные характеристики бетона допускается принимать по табл. 1 и 2 рекомендуемого приложения 2.

7.8. Деформативные характеристики бетона, необходимые для расчета термонапряженного состояния конструкций, допускается принимать:

начальный модуль упругости бетона, МПа, в возрасте менее 180 сут — по формуле

где — безразмерный параметр, принимаемый по табл. 3 рекомендуемого приложения 2;

— возраст бетона, сут;

начальный модуль упругости бетона в возрасте 180 сут и более следует принимать в соответствии с п. 2.15.

Характеристики ползучести бетона следует принимать по табл. 4 рекомендуемого приложения 2.

Для сооружений I класса деформативные характеристики бетона следует уточнять исследованиями на образцах из бетона производственного состава.

7.9. Расчет бетонных и железобетонных конструкций по образованию (недопущению) температурных трещин следует производить по формулам:

а) при проверке образования трещин и определении их размеров

Для образования поверхностной трещины необходимо, чтобы условие (74) выполнялось в пределах зоны растяжения, глубина которой в направлении, перпендикулярном поверхности, была бы не менее 1,3 , где — максимальный размер крупного заполнителя бетона;

б) при недопущении трещин в конструкциях, рассчитываемых по второй группе предельных состояний,

в) при недопущении трещин в конструкциях, рассчитываемых по первой группе предельных состояний,

где и — соответственно нормативное и расчетное сопротивления бетона на осевое растяжение, определяемые в соответствии с п. 2.11;

— коэффициент перехода от нормативного сопротивления бетона на осевое растяжение к средней прочности на осевое растяжение бетона производственного состава, определяемый в соответствии с п. 7.10;

— коэффициент, учитывающий зависимость прочности бетона на осевое растяжение от возраста и принимаемый в соответствии с п. 7.11;

— модуль упругости бетона, определяемый в соответствии с п. 7.8;

— коэффициент условий работы, равный для массивных сооружений — 1,1, для остальных — 1,0;

— работа растягивающих напряжений на соответствующей разности полных и вынужденных температурных деформаций в бетоне:

где — текущее время;

— температура бетона в момент времени ;

— температурный коэффициент линейного расширения бетона;

— деформации бетона, определенные с учетом переменных во времени модуля упругости и ползучести бетона;

— растягивающие напряжения в бетоне:

где — напряжения в бетоне, определенные с учетом переменных во времени модуля упругости и ползучести бетона.

7.10. Коэффициент определяется по формуле

где — коэффициент, зависящий от установленной обеспеченности гарантированной прочности бетона и равный 1,64 при = 0,95 и 1,28 при = 0,90;

— коэффициент вариации прочности бетона производственного состава.

В проектах бетонных и железобетонныx конструкций гидротехнических сооружений следует принимать = 0,135 при = 0,95, = 0,17 при = 0,90.

7.11. Значение в зависимости от возраста бетона следует принимать для строительного периода по табл. 5 рекомендуемого приложения 2, для эксплуатационного периода, как правило, равным 1,0.

Для сооружений I и II классов коэффициент следует уточнять исследованиями на крупномасштабных образцах из бетона производственного состава.

7.12. Для сооружений I и II классов в технико-экономическом обосновании, а для сооружений III и IV классов — во всех случаях допускается расчет по образованию (недопущению) трещин от температурных воздействий производить по формуле

где — температурные напряжения в момент времени ;

— коэффициент, определяемый согласно указаниям п. 5.3;

— предельная растяжимость бетона, определяемая по табл. 6 рекомендуемого приложения 2;

— коэффициент, учитывающий зависимость от возраста бетона, определяемый по табл. 7 рекомендуемого приложения 2.

При определении коэффициента значения следует принимать равными длине участка эпюры растягивающих напряжений в пределах блока. В расчетах по формуле (79) следует принимать при см или при наличии на участке эпюры растягивающих напряжений зоны с нулевым градиентом напряжений.

ОСНОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ

Усилия от внешних нагрузок и воздействий

в поперечном сечении элемента

М — изгибающий момент;

N — продольная сила;

Q — поперечная сила.

— расчетные сопротивления бетона осевому сжатию соответственно для предельных состояний первой и второй групп;

— расчетные сопротивления бетона осевому растяжению соответственно для предельных состояний первой и второй групп;

— расчетные сопротивления арматуры растяжению для предельных состояний первой и второй групп;

— расчетное сопротивление поперечной арматуры растяжению для предельных состояний первой группы при расчете сечений, наклонных к продольной оси элемента;

— расчетное сопротивление арматуры сжатию для предельных состояний первой группы;

— начальный модуль упругости бетона при сжатии и растяжении;

— модуль упругости арматуры;

— отношение соответствующих модулей yпpугости арматуры и бетона .

Характеристики положения продольной арматуры

Читать еще:  Отливы для цоколя фундамента

в поперечном сечении элемента

— обозначение продольной арматуры:

а) для изгибаемых элементов — расположенной в зоне, растянутой от действия внешних усилий;

б) для сжатых элементов — расположенной в зоне, растянутой от действий усилий или у наименее сжатой стороны сечения;

в) для внецентренно растянутых элементов-наименее удаленной от точки приложения внешней продольной оси;

г) для центрально растянутых элементов — всей в поперечном сечении элемента;

— обозначение продольной арматуры:

а) для изгибаемых элементов — расположенной в зоне, сжатой от действия внешних усилий;

б) для сжатых элементов — расположенной в зоне, сжатой от действия внешних усилий или у наиболее сжатой стороны сечения;

в) для внецентренно растянутых элементов — наиболее удаленной от точки приложения внешней продольной силы.

— ширина прямоугольного сечения, ширина ребра таврового или двутаврового сечения;

— высота прямоугольного, таврового или двутаврового сечения;

— расстояние от равнодействующей усилий соответственно в арматуре и до ближайшей грани сечения;

-рабочая высота сечения ( );

— высота сжатой зоны сечения (бетона);

-относительная высота сжатой зоны бетона, равная

— расстояние между хомутами, измеренное по длине элемента;

— эксцентриситет продольной силы N относительно центра тяжести приведенного сечения;

— расстояние от точки приложения продольной силы соответственно до равнодействующей усилий в арматуре и ;

— номинальный диаметр арматурных стержней;

— площадь всего бетона в поперечном сечении;

— площадь сечения сжатой зоны бетона;

— площадь приведенного сечения элемента;

— площадь сечений арматуры соответственно и ;

— площадь сечения хомутов, расположенных в одной нормальной к продольной оси элемента плоскости, пересекающей наклонное сечение;

-площадь сечения отогнутых стержней, расположенных в одной наклонной к продольной оси элемента плоскости, пересекающей наклонное сечение;

— момент инерции сечения бетона относительно центра тяжести сечения элемента;

— момент инерции приведенного сечения элемента относительно его центра тяжести;

— момент инерции площади сечения арматуры относительно центра тяжести сечения элемента;

— момент инерции сжатой зоны бетона относительно центра тяжести сечения;

— статический момент площади сечения сжатой зоны бетона относительно точки приложения равнодействующей усилий в арматуре ;

— статические моменты площади сечения всей продольной арматуры относительно точки приложения равнодействующей усилий соответственно в арматуре и .

— надежности по назначению сооружения;

— условий работы сооружения;

— условий работы бетона;

— условий работы арматуры;

— армирования, определяемый как отношение площади сечения арматуры к площади поперечного сечении элемента , без учета свесов сжатых и растянутых полок.

ХАРАКТЕРИСТИКИ БЕТОНА ДЛЯ РАСЧЕТА КОНСТРУКЦИЙ

Бетон расширяющийся: свойства, сферы применения, нюансы изготовления

Бетон расширяющийся (ГОСТ 32803-2014) — это материал, содержащий в своем составе напрягающий цемент или специальные расширяющие добавки для формирования предварительного напряжения конструкций в период твердения смесей.

В результате таких условий схватывания раствора, удается получить расширяющийся бетон, обладающий повышенной плотностью, водонепроницаемостью и долговечностью (см. видео в этой статье).

Объемные деформации конструкций

При производстве железобетона, во время гидратации цемента образуются коллоидные и кристаллические образования, которые по-разному могут влиять на процессы деформации, происходящие в цементном камне.

Коллоидные образования в период твердения смесей уплотняются и способствуют появлению усадочных раковин. А образуемые кристаллы, при определенных температурных условиях в момент гидратации цементного камня, могут увеличиваться в объеме, провоцируя тем самым тепловое расширение бетона, приводящее к появлению трещин на поверхности конструкций.

Усадочные деформации

Усадка по механизму возникновения делится на два вида.

  1. усадочное напряжение (расширение)
  2. усадочная деформация.

Интенсивность протекания таких деформаций зависит от показателей влажности и температуры окружающей среды.

Изменения, происходящие в результате усадочной деформации, в сочетании с таким явлением, как линейное расширение бетона, значительно снижают трещиностойкость и долговечность сооружений. Первооснова усадки — это протекающий в течение некоторого времени процесс снижения линейных размеров смеси, вызванный физико-химическими реакциями, происходящими на тот момент в структуре изделия.

Усадочные процессы можно распределить на несколько этапов:

  • пластическая деформация, происходящая в момент схватывания смеси;
  • усадка, вызванная последующим твердением смесей (до 28 дней);
  • деформации, происходящие в зрелом возрасте (более 28 дней).

Коэффициент усадки представляет собой условное процентное отношение изменения начального объема материала в сравнении с его конечным значением, и обычно не превышает 1,5%.

Линейная температурная деформация

Линейное расширение — это объемные трансформации, происходящие в структуре материала под воздействием внутренних или внешних температурных факторов.

  • Коэффициент линейного расширения железобетона (α). Это относительное увеличение линейных размеров конструкций при повышении температуры на 1 K в стандартных условиях.
  • Коэффициент теплового расширения бетона. Его величина, зависит от температуры и сравнительной влажности окружающей среды. Данный параметр неразрывно связан с показателем теплопроводности материала.

На заметку: Последнее значение представляет собой способность изделия аккумулировать, или проводить тепло через свою структуру. Чем выше плотность — тем выше этот параметр.

  • Коэффициент линейного расширения бетона. Равен 0,00001 (°С) -1 — то есть, при повышении температуры до +50°С, линейное расширение будет иметь значение 0,5 мм/м.
  • Коэффициент расширения бетона. Также зависит от марки цемента и состава заполнителей.

Заполнитель и цементный камень владеют разными коэффициентами теплового расширения. Поэтому, при изменении температурных условий эти компоненты ведут себя неодинаково, в результате чего возникают объемные напряжения в структуре изделия, способствующие образованию трещин как на поверхности, так и внутри материала.

Для предотвращения трещинообразования, температурного расширения и усадочных деформаций в современном строительстве предусмотрен целый комплекс мероприятий:

  • расширительные швы в бетоне (деформационные или температурные);
  • повышение частоты армирования конструкций;
  • разделение монолитных поверхностей на отдельные автономные блоки и др.

Однако все эти методы значительно повышают себестоимость строительства и не всегда действуют результативно в отношении повышения эксплуатационных характеристик. Наиболее эффективным способом устранения вышеописанных недостатков является использование расширяющихся и напрягающих вяжущих.

Расширяющиеся и напрягающие бетоны

Бетоны напрягающие — это смеси на основе напрягающих цементов, способные в начальной фазе твердения увеличиваться в объеме и растягивать находящуюся в непосредственном контакте арматуру, которая в результате таких процессов получает эффект самонапряжения (обжатия).

  • Причем, арматурные стержни растягиваются независимо от их направления и схемы расположения в структуре изделия, что способствует получению двухосного объемного самонапряжения конструкций.
  • Механизм действия расширяющихся материалов основан на создании контролируемого направленного кристаллообразования в период твердения цементного камня, что способствует регулированию процесса объемных деформаций в пластической структуре изделия.
  • Применение расширяющихся быстротвердеющих бетонов, благодаря регулируемому линейному расширению, позволяет значительно компенсировать последствия усадочных деформаций, повысить трещиностойкость и сроки эксплуатации зданий и сооружений.

В практике существуют два основных вида расширяющихся материалов:

  • с нормируемой величиной обжатия;
  • с компенсированной усадкой, но с ненормируемым самонапряжением (обжатием).

Помимо этих категорий, можно выделить в отдельную группу расширяющиеся мелкозернистые смеси, применяемые для ремонтно-восстановительных работ.

Основные характеристики напрягающих бетонов (ГОСТ 32803-2014):

  1. Для тяжелого предусматривают следующие классы на сжатие: B20—B90; на растяжение — Bt0,8—Bt4,0.
  2. Для легкого: на сжатие — B10—B40; на растяжение — классы Bt0,8—3,2.
  3. С учетом величины напряжения, бетон классифицируют по следующим маркам: Sp0,6—4,0.

Подсказки: марки по самонапряжению Sp 0,6—1,0 относят к разряду бетонов с компенсированной усадкой, а классы Sp 1,2—4,0 к расширяющимся смесям с нормируемым обжатием.

  1. По морозостойкости F200—F
  2. По водонепроницаемости: тяжелые —W12—W20, легкие — W8—W
  3. Данный материал обладает высокой прочностью (40–70 Мпа). Причем, рост этого значения особенно интенсивно наблюдается в раннем возрасте (28 суток). По истечении трех месяцев прочность на растяжение—сжатие увеличивается на 30%, а по достижению 6 месяцев — на 40%.
  4. Отсутствует коррозия арматуры.
  5. Высокая сульфатостойкость.
  6. Газопроницаемость в 40 раз ниже в сравнении с тяжелыми бетонами на портландцементе.

Применение

Отмеченные свойства данного материала позволяют его эффективное применение как в монолитных, так и в сборных железобетонных конструкциях:

  • при строительстве несущих элементов и проезжей части мостов, что позволило увеличить несущую способность на 12–16%;
  • для строительства энергетических объектов ТЭЦ, ГЭС, АЭС и др.;
  • при сборном строительстве туннелей метрополитена;
  • при возведении напрягающих конструкций спортивного назначения (крытые спортивные арены и пр.);
  • при производстве железобетонных труб высокого давления;
  • для оборудования покрытий кровель и устройства прочных промышленных полов;
  • широкое использование при устройстве надежных гидроизоляционных покрытий, наносимых методом торкретирования.
Читать еще:  Как определить прочность бетона

Расширяющийся бетон производится на основе напрягающего и безусадочного цемента с использованием крупных и мелких заполнителей природного происхождения.

Расширяющиеся цементы представляют собой смеси, состоящие из портландцемента или глиноземистого цемента со специальными добавками, обеспечивающими увеличение объема структуры цементного камня на начальном этапе твердения.

В качестве добавок обычно выступают:

  • гипс;
  • глиноземистые шлаки;
  • гидроалюминаты кальция.

В процессе гидратациии цементного камня образуются гидросульфоалюминатные соединения кальция, в момент формирования которых возникает эффект расширения структуры, компенсирующий усадочные явления.

Наибольшее распространение получили следующие виды цементов:

  1. Водонепроницаемые расширяющиеся цементы (ВРЦ), получаемые путем смешивания глиноземистых цементов (70%), гидроалюмината кальция (10%) и тонкомолотого гипса (20%).

  1. Водонепроницаемые безусадочные цементы (ВБЦ), состоящие из тех же компонентов что и (ВРЦ), но взятыми в других пропорциях и в других объемных соотношениях. Эти цементы способны формировать цементный камень высокой водонепроницаемости, выдерживающий давление воды до 0,70 Мпа.

  1. Расширяющийся цемент (РПЦ), получаемый в результате тонкого помола и смешивания портландцемента (60%), высокоглиноземистых доменных шлаков (5–7%), гипса (7–10%) и минеральной добавки (20–25%).

  1. Гипсоглиноземистые расширяющиеся цементы (ГГРЦ), состоящие из смеси тонкоизмельченного глиноземистого доменного шлака (70%) и молотого гипса (30%).

  1. Напрягающие цементы (НЦ) производят на базе портландцемента (60–70%), глиноземистого цемента (18–20%) и двуводного гипса, совместно измельченных до показателя удельной поверхности минимум 3500 см 2 /г (см. фото).

Заполнители

Доля крупных и мелких заполнителей в бетоне, может достигать 80% от общего объема смеси, и оказывать значительное влияние на физико-химические свойства изделия. Оптимальный подбор состава данных компонентов может существенно сократить использование цемента, цена которого в значительной мере влияет на себестоимость продукта.

Кроме того, заполнители наравне с вяжущими могут улучшать технические характеристики конструкций:

  • увеличивать прочность и сдерживать деформации;
  • снижать значение ползучести;
  • принимать на себя воздействие линейных напряжений и частично компенсировать усадку.

Для приготовления расширяющихся растворов, в роли крупных заполнителей выступают гравий и щебень фракций 5–70 мм. Требования к данному материалу такие же, как и для традиционных тяжелых бетонов (ГОСТ 10268-80).

Рекомендуемая марка крупных заполнителей

В качестве мелкого заполнителя, чаще всего используют кварцевый песок мелких фракций (ГОСТ 8736-93) плотностью 2000–2800 кг/м 3 , причем, чем меньше фракция, тем выше плотность бетона.

Приготовление расширяющихся смесей

Расширяющие и напрягающие бетоны при необходимости можно приготовить своими руками, в условиях строительной площадки.

Существует два основных способа для изготовления быстротвердеющих водонепроницаемых смесей:

  • с применением напрягающих и расширяющихся цементов;
  • с использованием специальных расширяющихся добавок на основе портландцемента.

Расход модифицированных цементов и пропорции по отношению к заполнителям, такие же, как и для приготовления обычного тяжелого бетона. Инструкция для приготовления расширяющихся смесей с использованием портландцемента для каждой добавки индивидуальна. Пропорции и порядок действий описаны на тыльной стороне упаковки продукта.

Модифицирующие расширяющие добавки

При производстве быстротвердеющих расширяющих бетонов используют алюминатносульфатные и алюмооксидные добавки, обладающие как расширяющим, так и напрягающим действием.

Наиболее распространенные это:

  1. Расширяющая химическая добавка (РД) — тонкоизмельченная сухая смесь алюминатных и сульфатных компонентов, позволяющая получать изделия с высокой водонепроницаемостью, морозостойкостью и компенсированной усадкой.

  1. Добавка РСАМ — сухой порошок светло-коричневого цвета. Служит для получения безусадочного и напрягающего вяжущего на основе портландцемента. При равнозначном объеме цемента, введение добавки в состав смеси существенно повышает прочность на растяжение—сжатие, и полностью удаляет проблему возникновения трещин.

  1. Expancrete — это сухая неорганическая добавка, компенсирующая усадку. Эффект действия зависит от объема используемой присадки, водоцементного соотношения, фракции и состава заполнителя, а также частоты армирования конструкций. Поэтому, необходимое количество добавки определяют опытным путем.


Расширяющийся бетон необходимо укладывать в опалубку с оптимальным уплотнением и последующим тщательным уходом, обеспечивающим требуемый температурный и влажностный режим, при котором исключаются незапланированные линейные расширения конструкций.

Теплоемкость бетона

Этот показатель имеет очень важное значение, поскольку именно от него зависит степень изменения характеристик материала под воздействием разных температур. С течением времени вследствие этого мы может наблюдать осадку или, наоборот, набухание материала. Так как бетон применяется при строительстве зданий, то данный фактор должен учитываться как один из самых важных. И делать это нужно еще на стадии проектирования.

Все, что касается теплоемкости бетона, изложено в этой статье. Из нее же вы узнаете о методике определения данного показателя. С помощью таблицы теплоемкости различных материалов, содержащейся здесь, вы сможете узнать об их способности сохранять определенное количество тепла.

От чего зависит величина теплопроводности бетона? Ответ на этот вопрос вы также узнаете, прочитав статью до конца. Также вы узнаете, к чему приводит температурное расширение этого материала, и о том, как избежать превышения этого параметра при применении бетонных конструкций.

Обладание этими знаниями помогает избежать многих досадных ошибок при строительстве сооружений разного типа.

Теплоемкость бетона довольно важный показатель при строительстве любого здания или сооружения. Как правило, такой показатель составляет 0,00001(°С)-1. Обусловлено это тем, что со временем все бетонные конструкции неизбежно претерпевают изменения плотности из-за набухания или усадки. Это происходит даже тогда, когда температура воздуха и уровень влажности вокруг бетона остаются неизменными. Если рассматривать подробно, то сам бетон как каменный материал для строительства формируется из смеси того или иного вида вещества, имеющие вяжущие свойства.

Соотношение между компонентами в бетонной смеси

Изготовление такого искусственного материала проводится в соответствии с количеством вяжущего вещества и воды. При этом воду можно использовать как питьевую, так и любую другую. И именно исходя из предназначения бетонных материалов, строители производят расчеты по определению нужной теплоемкости смеси. Теплоемкость определяется как удельная величина, которая влияет на расстояние усадочных швов, необходимых для надежности самой конструкции. Существуют разные показатели усадки бетона и особая технология исследования его при изготовлении.

Основные свойства бетона

Такой процесс, как усадка или, наоборот, набухание бетона, напрямую зависит от количества цементного вещества, замешанного в растворе при его изготовлении. Со временем после строительства и уже ввода здания в эксплуатацию бетон будет постепенно высыхать и на каждый метр линейного размера давать усадку около 0,3 мм. Приблизительно на такую же величину будет происходить и набухание готового материала. Так, при покупке цементного вещества и изготовлении бетона важно знать, что:

  • в зависимости от количества самого цемента в заготовленной массе для изготовления цементных плит необходимо обязательно учитывать расстояние усадочных швов;
  • в среднем усадочный шов должен быть более 1,1 мм на 1 м общих линейных размеров;
  • для бетона коэффициент расширения от температурных колебаний (удельная теплоемкость) составляет 0,00001(°С)-1, и, например, при повышении или понижении температуры на 40° он расширится до 0,8 мм/м.;
  • заготовленная смесь для бетона всегда легче, чем уже готовый материал;
  • он бывает монолитный, тяжелый и пористый, и удельная теплоемкость напрямую зависит от его вида.

Для определения теплоемкости заготовленную массу выкладывают в специальную форму и ставят температурный датчик по центру. Далее она подвергается вибрации, при этом саму форму в месте зазора закрывают крышкой с уплотняющей замазкой, имеющей водонепроницаемые свойства. Для проведения этой процедуры используют аппаратуру, которая одновременно регистрирует и в то же время регулирует температурные колебания внутри формы со смесью.

Читать еще:  ПВА в бетоне за и против

Форму, в которую укладывают смесь помещают в адиабатическую камеру, способную поддерживать внутри нужную температуру для измерений.

При этом важно отметить, что температура в адиабатической камере должна быть доведена до температуры самой бетонной массы. Все замеры и записи температурных колебаний фиксируются на ленту регистрирующей и регулирующей аппаратуры. В дальнейшем после проведения испытаний проводят расшифровку лент регистрирующей аппаратуры. Важно отметить, что удельная теплоемкость смеси должна быть исследована не позднее 1 часа после ее изготовления, а такое испытание необходимо проводить не менее 5 суток пока температура в камере не превысит 1°.

Таблица теплоемкости некоторых материалов

Таблица показывает, какое количество тепла может сохранить в себе 1 кубометр материала при его нагреве на 1 градус.

Термическая стойкость и тепловыделение

Для обеспечения долговечности бетона необходимо свести к минимуму его деформации при температурном воздействии. Возникновение термических напряжений в бетоне возможно при его нагревании от внешних источников тепла, и в результате саморазогрева за счет экзотермии при твердении.

Интенсивные деструктивные процессы при нагревании бетона идут при температуре более 200 0 С (рис. 1.30).

Нагрев в интервале 200. 400°С приводит к постепенному снижению прочности цементного камня и бетона из-за дегидратации в основном гидроалюминатов, а также распада и перекристаллизации гидросульфоалюминатов кальция. При нагревании свыше 300°С нарушается структура цементного камня и бетона в результате различия деформаций гидратных продуктов цементного камня и непрогидратированых зерен цемента. При 500. 600°С идёт разложение гидратных новообразований и дегидратация Са(ОН)2 — продукта гидролиза клинкерных минералов, преимущественно трехкальциевого силиката, что способствует дальнейшему снижению прочности цементного камня.

В интервале 600. 700°С возможно модификационное превращение Р — 2CaOSiC>2 в y-2CaOSi02, сопровождаемое некоторым увеличением объёма. Портландцементные образцы, прогретые до температуры 600. 800°С, полностью разрушаются после выдерживания их в воздушно-сухих условиях в основном в результате вторичной гидратации оксида кальция. При непрерывном нагревании до 1200°С прочность цементного камня составляет 35. 40% прочности контрольных образцов. При этом развивается значительная усадка — до 1% и более.

Рис.1.30. Влияние температуры на прочность бетона:

  • 1 — портландцемент 70% + трепел 30%;
  • 2 -портландцемент 70% + пемза 30%;
  • 3 — портландцемент

Способность бетона противостоять, не разрушаясь, совместному действию напряжений от механической эксплуатационной нагрузки и термических напряжений при определенном числе циклов нагрева и охлаждения либо при температурном градиенте называют термостойкостью. Требования к термостойкости бетона и железобетонных конструкций зависят от их назначения, конкретных условий эксплуатации. Так, термостойкие агрегаты должны сохранять проектную прочность в течение всего нормативного срока эксплуатации, железобетонные колонны в зданиях 1 -ой степени огнестойкости при пожаре не должны разрушаться ранее 2,5 ч, покрытие пола горячих цехов должно выдерживать попеременный нагрев и остывание при действии ударных нагрузок.

Рис.1.31. Зависимость между коэффициентом линейного термического расширения бетона и количеством циклов нагревания и охлаждения, необходимым для снижения величины предела прочности при изгибе на 75%

Термическая стойкость бетона, характеризуемая количеством циклов нагревания и охлаждения до определенного снижения прочности, линейно связана с его коэффициентом термического расширения (к.т.р.) (рис. 1.31). Для цементного камня величина к.т.р. находится в пределах от 1 Ох 10 -6 до 18,3х10′ 6 на 1°С. С увеличением содержания заполнителя этот показатель уменьшается. Ниже приведено по данным А.М.Невилля изменение величины к.т.р. для цементно-песчаного раствора:

цемент:песок к.т.р.х10 6 на 1°С

Коэффициент линейного термического расширения цементного бетона в интервале от -40 °С до + 100°С принимают обычно at = 10 ? 10′ 6 ° С 1 . При 200° С — а, = 9,5 • 10’ 6 ° С 1 , 300°С — at = 9 • Ю- 6о С

В зависимости от состава бетонной смеси и способности к термическому расширению отдельных ее компонентов at можно рассчитать по формуле:

где ащ, ап, ац к — соответственно значения к.т.р крупного, мелкого заполнителей и цементного камня; — их объемные

концентрации в бетонной смеси.

Одним из важнейших факторов, влияющих на термическое расширение и термостойкость бетона, является его влажность При интенсивном тепловом воздействии разрушению больше подвергаются поверхностные слои бетона в изделиях и конструкциях с наибольшим градиентом влажности. Давление пара в бетоне в значительной степени зависит от скорости нагрева, проницаемости и начальной влажности. Наибольшее давление пара от теплового воздействия наблюдается при заполнении водой 70. 80% порового пространства. Термостойкость бетона увеличивается с уменьшением размера крупного заполнителя, тщательном приготовлении бетонной смеси и уходе за бетоном при его твердении с целью получения структуры с наименьшим количеством и минимальными по длине трещинами.

Величина коэффициента расширения и термостойкость уменьшаются с возрастом бетона. Большей термостойкостью будет обладать бетон с меньшими значениями модуля упругости, большей теплопроводностью. Важное значение имеет также различие температурных деформаций крупного заполнителя и

растворной части. Термостойкость бетона можно увеличить дисперсным армированием температуростойкими волокнами из асбеста, базальта или стальных фибр, конструктивным армированием, применением заполнителей из андезита, базальта, диабаза и других материалов, обеспечивающих минимальное различие температурных деформаций отдельных компонентов.

Термические напряжения в бетоне массивных конструкций, в частности гидротехнических сооружений, обусловлены температурными градиентами, возникающими в результате тепловыделения (экзотермии) при гидратации цемента.

Для оценки термической трещиностойкости бетона используют критерий Кт:

где 8пр — предельная растяжимость бетона; С — удельная теплоемкость, кДж/кгтрад; рб — плотность бетона, кг/м 3 ; Q — тепловыделение бетона, кДж/m 3 ; а — коэффициент линейного температурного расширения.

Нормируемое тепловыделение для массивных конструкций часто находится из условия лимитирования температуры бетона к определенному сроку твердения. Допустимое значение тепловыделения в кДж/m 3 можно найти по формуле:

где С — удельная теплоемкость бетона в кДж/кг град; tKp -критическое значение температуры бетона, устанавливаемое проектом; К — коэффициент, равный или меньший единицы, зависящий от условий охлаждения бетона в конструкции; t— начальная температура укладки.

Критическая температура бетона в массивных сооружениях назначается с учетом среднегодовой температуры (tr0fl):

где At — допускаемое превышение критической температуры над среднегодовой.

Например, при At=20°C, troa=5°C, Срб=2318 кДж/м 3 ‘град; (С=0,966 кДж/м 3 град; рб =2400 кг/м 3 ); К=0,8; t=8°C максимально допустимое значение тепловыделения:

Тепловыделение или экзотермия бетона является следствием гидратации цемента и структурообразования цементного камня. Анализ тепловыделения (калориметрический анализ бетона) является одним из наиболее объективных высокоинформативных методов исследования, широко используемый при исследовании кинетики процессов твердения цемента, оценке влияния его химико-минералогических и структурных особенностей, эффекта химических добавок, параметров порообразования, льдообразования и др.

Тепловыделение бетона вместе с количеством тепла, затраченным на нагрев компонентов при производстве работ в зимних условиях с применением способа термоса, должно быть не меньше количества расходуемого тепла (теплопотерь) при остывании конструкции до конечной температуры, и получении заданной прочности бетона. Из формулы Б.Г. Скрамтаева можно определить необходимое тепловыделение бетона, при заданной продолжительности остывания бетона т в конструкциях с модулем поверхности Мп (отношением площади ее наружной поверхности к объему в м 3 ):

где К — коэффициент теплопередачи опалубки или укрытия не- опалубленных поверхностей кДж/m 2 ч град; tg ср — средняя температура бетона за время остывания бетона °С; tH в — средняя температура наружного воздуха за время остывания т, °С; t6.K -температура бетона к концу остывания (для бетонов без противо- морозных добавок принимается не ниже 5°С).

Среднюю температуру бетона за время остывания, °С рекомендуется определять по формуле:

Основная доля тепла при твердении цемента в бетоне в нормальных температурных условиях выделяется уже в первые 3-7 суток твердения (табл. 1.24) (рис. 1.32).

Интенсивность тепловыделения цемента в бетоне

Ссылка на основную публикацию
Adblock
detector