Содержание

Как определить прочность бетона неразрушающим методом

Неразрушающий контроль бетона: прямые и косвенные методы. Сравнительная характеристика и тестирование

Строительные конструкции на базе смеси из вяжущего вещества, песка и заполнителя нуждаются в тестировании на предмет надежности и безопасности. Однако подобные исследования не должны стать причиной прерывания эксплуатации испытываемого объекта, поэтому производится определение прочности бетона неразрушающим методом. Это позволяет сократить расходы, снизить трудоемкость и исключить локальные повреждения.

На фото демонстрируется анализ свойств бетона.

Прямые методы контроля

Данные способы необходимы для формирования градуировочных зависимостей и их последующей корректировки для косвенных методов, проводимых на тех же самых участках сооружения. Технология определения прочностных качеств бетона может быть применима при освидетельствовании на различных стадиях возведения строений, а также при эксплуатации и реконструкции готовых объектов.

Отрыв со скалыванием

Подобная операция производится в соответствии с государственными стандартами, где отражены основные сведения о способе проведения. На полученные результаты не оказывает никакого влияния состояние поверхности.

Для проведения исследований используются анкерные устройства трех типов.

Так делается отрыв со скалыванием.

  1. Рабочий стержень, оснащенный анкерной головкой.
  2. Прибор с наличием разжимного конуса и рифленых сегментных щек.
  3. Устройство с полым разжимным конусом, который имеет специальный стержень для фиксации приспособления в одном положении.

Представлены основные типы приспособлений.

Примечание! Выбирая тип приспособления и глубину проникновения анкера, следует брать в расчет предполагаемую прочность состава и размеры заполнителя, что отражено в таблице ниже.

Дополнение! Ультразвуковые изыскания предоставляют возможность выполнять массовые испытания практических любых конструкций неограниченное количество раз. Основной недостаток кроется в допускаемой погрешности.

Упругий отскок

Неразрушающий контроль прочности бетона этим методом позволяет установить зависимость между прочностью на сжатие и упругостью материала. При исследовании металлический боек основного прибора после удара отдаляется на определенное расстояние, которое является показателем прочностных качеств конструкции.

Так осуществляется проверка отскоком.

Во время испытаний приспособление фиксируется так, чтобы стальной элемент плотно соприкасался с бетонной поверхностью, для чего применяются специальные винты. После крепления маятник устанавливается горизонтально. В этом случае он защелкивается непосредственно спусковым крючком.

Приложив устройство перпендикулярно к плоскости, нажимают на курок. Боек взводится автоматически, после чего самостоятельно освобождается и совершает удар под действием особой пружины. Металлический элемент отскакивает на какое-то расстояние, которое измеряется специальной шкалой.

Схема движения внутреннего стержня.

В качестве основного инструмента для испытаний используется прибор системы КИСИ, который имеет достаточно сложное строение. Прочность затвердевшей смеси удается определить на основании данных устройства после проведения 6-7 тестов по специальному графику.

Придание ударного импульса

Благодаря этому методу исследования можно зафиксировать энергию удара, освобождающуюся в момент соприкосновения бойка с бетонной конструкцией. Положительным моментом считается то факт, что приборы неразрушающего контроля бетона, работающие по принципу ударного импульса, имеют компактные размеры. Однако их цена достаточно высока.

Результаты испытаний составов разных классов.

Пластическая деформация

При проведении операции осуществляется измерение размеров следа, оставленного на бетонной поверхности стальным элементом. Метод считается несколько устаревшим, но в связи с дешевизной оборудования он продолжает активно использоваться в строительной среде. После нанесенного удара измеряются оставшиеся отпечатки.

Устройства для определения прочности такого типа базируются на вдавливании стержня непосредственно в плоскость путем статического давления нужной силы или обычного удара. В качестве основных приборов используются маятниковые, молотковые и пружинные изделия.

Ниже приводятся условия проведения операции.

Молоток Кашкарова для проведения пластической деформации.

  • Испытания должны осуществляться на участке, площадь которого колеблется от 100 до 400 кв. см.
  • При проведении данной операции следует делать не менее пяти измерений с высокой точностью.
  • Ударная сила должна иметь перпендикулярное направление относительно испытываемой плоскости.
  • Для определения прочностных характеристик требуется гладкая поверхность, которая достигается формованием в опалубке из металла.

Важно! Если производится измерение прочности бетона неразрушающим методом с использованием устройств молоткового типа, то образцы должны устанавливаться на идеально ровное основание.

Сравнительная характеристика на примере

В качестве объекта берется колодец, изготовленный из монолитного железобетона. Его глубина составляет 8 м, а радиус – 12 м. Заливка боковых поверхностей велась захватками, которые разделяют конструкцию на 7 ярусов по высоте.

Результаты исследований представлены в таблице ниже.

Неразрушающие методы контроля прочности бетона

Рубрика: Технические науки

Статья просмотрена: 29518 раз

Библиографическое описание:

Бербеков Ж. В. Неразрушающие методы контроля прочности бетона // Молодой ученый. — 2012. — №11. — С. 20-23. — URL https://moluch.ru/archive/46/5697/ (дата обращения: 11.02.2020).

В статье ставится задача рассмотреть методы контроля прочности бетона, при которых последний не теряет свои эксплуатационные качества и не нарушается целостность изделия. Выявлена и обоснована необходимость использования неразрушающих методов контроля прочности, описаны принципы проведения испытаний.

Ключевые фразы: бетон, прочность бетона, неразрушающий контроль, методы испытаний, ударный, скол, ультразвуковой.

Бетон — строительный материал, искусственный каменный материал, получаемый в результате затвердевания рационально подобранной и уплотненной смеси вяжущего вещества (цемент или др.), заполнителей, воды. В ряде случаев может содержать специальные добавки. Смесь этих материалов до затвердевания называют бетонной смесью. Зерна песка и щебня составляют каменную основу бетона. Цемент­ное тесто, образующееся после затворения бетонной смеси водой, обво­лакивает зерна песка и щебня, заполняет промежутки между ними и играет вначале роль смазки заполнителей, придающей подвижность (текучесть) бетонной смеси, а впоследствии, затвердевая, связывает зерна заполнителей, образуя искусственный камень — бетон. Бетон в сочетании со стальной арматурой называют железобетоном.

Неразрушающий контроль — контроль свойств и параметров объекта, при котором не должна быть нарушена пригодность объекта к использованию и эксплуатации. Неразрушающий контроль особенно важен при создании и эксплуатации жизненно важных изделий, компонентов и конструкций.

При проведении определения прочности бетона с помощью методов неразрушающего контроля необходимо учитывать, что все эти методы являются косвенными. Выделить какой-то один метод нельзя, все они обладают своими достоинствами, недостатками и ограничениями в применении. Поэтому лаборатория оснащена приборами неразрушающего контроля, позволяющими использовать все методы. На начальном этапе существования здания обычно осуществляется контроль соответствия проекту линейных размеров и отсутствия их существенных отклонений от нормативных значений. Для этого применяются линейки, рулетки, нутромеры, скобы, штангенциркули, щупы микроскопы и другой специальный инвентарь. Для замеров отклонений конструкций от вертикали и горизонтали обычно используются нивелиры, теодолиты и поверочные линейки. В существующем здании оценка прочностных показателей конструктивных единиц обычно осуществляется двумя способами. Первый основывается на нагружении конструкции вплоть до ее разрушения, и, таким образом, определяется предельная несущая способность. Однако применение такого метода является, по понятным причинам, экономически нецелесообразным. Гораздо более привлекательны в этом плане неразрушающие методы, которые подразумевают применение для оценки состояния конструкций специальных приборов. В этом случае обработка полученных результатов измерений осуществляется при помощи компьютерных программ, что позволяет получить значительную достоверность конечных характеристик. Наиболее весомым фактором, определяющим метод и средства измерения и контроля, является предельно допустимая погрешность измерений. Так же немаловажно удобство проведения работ, простота обработки результатов. Основой неразрушающих методов являются косвенные характеристики, такие как отпечаток на бетоне; энергия, затраченная на удар; напряжение, приведшее к местному разрушению бетона. Рассмотрим подробнее часто применяемые методы неразрушающего контроля для основных строительных материалов.


Методы местных разрушений

Это самые точные из методов неразрушающего контроля прочности, поскольку для них допускается использовать универсальную градуировочную зависимость, в которой изменяются всего два параметра:

1) крупность заполнителя, которую принимают равной 1,0 при крупности менее 50 мм и 1,1 при крупности более 50 мм;

2) тип бетона – тяжелый либо легкий.

Метод отрыва со скалыванием и скалывания ребра конструкции заключаются в регистрации усилия, необходимого для скалывания участка бетона на ребре конструкции, либо местного разрушения бетона в процессе вырывания из него анкерного устройства.

Метод отрыва со скалыванием является единственным неразрушающим методом контроля прочности, для которого в стандартах прописаны градуировочные зависимости. Метод отрыва со скалыванием характеризуется наибольшей точностью, но и наибольшей трудоемкостью испытаний, обусловленной необходимостью подготовки шпуров для установки анкера. К недостаткам метода следует отнести также невозможность использования в густоармированных и тонкостенных конструкциях.

Читать еще:  Устройство ламината на бетонный пол

Метод отрыва стальных дисков может быть использован при испытании бетона в густо-армированных конструкциях, когда метод отрыва со скалыванием, а нередко и метод скалывания ребра конструкции (с учетом его ограничений) не могут быть использованы. Он точен и менее трудоемок по сравнению с методом отрыва со скалыванием. К недостаткам метода следует отнести необходимость наклеивания дисков за 3-24 часа до момента испытания (в зависимости от применяемого клея).

Метод скалывания ребра конструкции используется главным образом для контроля линейных элементов (сваи, колонны, ригели, балки, перемычки и т.п.). В отличие от методов отрыва и отрыва со скалыванием, он не требует подготовительных работ. Однако при защитном слое менее 20мм и повреждениях защитного слоя метод неприменим.

Метод отрыва стальных дисков заключается в регистрации напряжения, необходимого для местного разрушения бетона при отрыве от него металлического диска, равного усилию отрыва, деленному на площадь проекции поверхности отрыва бетона на плоскость диска. В настоящее время метод используется крайне редко. Недостатки методов местных разрушений: повышенная трудоемкость; необходимость определения оси арматуры и глубины ее залегания; невозможность использования в густоармированных участках; частично повреждает поверхность конструкции.


Методы ударного воздействия на бетон

Самый распространенный метод контроля прочности бетона из всех неразрушающих — метод ударного импульса.

Метод ударного импульса заключается в регистрации энергии удара, возникающей в момент соударения бойка с поверхностью бетона.

Приборы, использующие данный метод, отличаются небольшим весом и компактностью, а определение прочности бетона методом ударного импульса является достаточно простой операцией. Результаты измерений выдаются в единицах измерения прочности на сжатие. Также с их помощью можно определять класс бетона, производить измерение прочности под различными углами к поверхности объекта, переносить накопленные данные на компьютер.

Ударные импульсы – это ударные волны малой энергии, генерируемые подшипниками качения вследствие соударений и изменений давления в зоне качения этих подшипников в течение всего срока службы подшипников и распространяющиеся в материалах деталей подшипника, подшипникового узла и прилегающих к ним деталей.

Основные задачи применения метода ударных импульсов:

получение заблаговременного предупреждения об ухудшении условий смазки подшипников для осуществления своевременной замены смазки по ее фактическому состоянию;

получение заблаговременного предупреждения об ухудшении условий работы подшипников вследствие различных внешних воздействий для принятия своевременных мер по устранению этих воздействий (например, перегрузки, существенного дисбаланса, несоосности и т.п.);

получение заблаговременного предупреждения о появлении дефектов подшипников для планирования своевременных замен подшипников;

сведение к минимуму простоев оборудования;

сведение к минимуму рисков отказов оборудования и обеспечение надежности его работы.

Метод упругого отскока заключается в измерении величины обратного отскока ударника при соударении с поверхностью бетона. Типичным представителем приборов для испытаний по этому методу является склерометр Шмидта и его многочисленные аналоги. Метод упругого отскока, как и метод пластической деформации, основан на измерении поверхностной твердости бетона.

Метод упругого отскока заимствован из практики определения твердости металла. Для испытания бетона применяют приборы, называемые склерометрами, представляющие собой пружинные молотки со сферическими штампами. Молоток устроен так, что система пружин допускает свободный отскок ударника после удара по бетону или по стальной пластинке, прижатой к бетону. Прибор снабжен шкалой со стрелкой, фиксирующей путь ударника при его обратном отскоке. Энергия удара прибором должна быть не менее 0,75 Н-м; радиус сферической части на конце ударника – не менее 5 мм. Проверку (тарировку) приборов проводят после каждых 500 ударов.

При проведении испытаний после каждого удара берут отсчет по шкале прибора (с точностью до одного деления) и записывают в журнал. Требования к подготовке участков для испытаний, к расположению и количеству мест удара, а также к экспериментам для построения тарировочных кривых такие же, как в методе пластической деформации.

Метод пластической деформации основан на измерении размеров отпечатка, который остался на поверхности бетона после соударения с ней стального шарика. Метод устаревший, но до сих пор его используют из-за дешевизны оборудования. Наиболее широко для таких испытаний используют молоток Кашкарова. Принцип действия прост. В молоток вставляется металлический стержень определенной прочности, после чего прибором наносят удар по поверхности бетона. С помощью углового масштаба измеряют размеры отпечатков, получившихся на бетоне и стержне. Прочность бетона определяется из соотношения размеров отпечатков (прочность стержня известна).

Приборы, применяемые для испытания методом пластических деформаций, основаны на вдавливании штампа в поверхность бетона путем удара или статического давления заданной силы. Устройства статического давления применяют ограниченно. Приборами ударного действия служат пружинные и ручные молотки со сферическим штампом (шариком) и приборы маятникового типа с дисковым или шариковым штампом. Твердость стали штампов приборов ударного действия должна быть не менее HRC 60, шероховатость — Ra Литература:


ГОСТ 18105-86 Бетоны. Правила контроля прочности бетона. Государственный стандарт союза ССР. 07.10.2007;

ГОСТ 24452-80 Бетоны. Методы испытаний. Государственный стандарт союза ССР. 07.10.2007;

Баженов Ю. М. Технология бетона: учебное пособие для технологических специальностей строительных вузов. Издательство «Высшая школа». 1979

Баженов Ю.М., Алимов Л.А., Воронин В.В. и др. Технология бетона, строительных изделий и конструкций. — М.: Изд-во АСВ, 2004;

Жуков А.Д. Универсальный справочник прораба. Изд-во НТС «Стройинформ», 2006;

Определение прочности бетона неразрушающим методом

Перед тем как ознакомиться с таким понятием, как определение прочности неразрушающим методом, необходимо до конца понять, что же из себя представляет бетон.

Наиболее жесткие требования к бетону, который используется при строительстве мостов и стратегически важных объектов.

Теоретическая информация

Бетоном является строительный каменный материал искусственного происхождения, который получается в процессе отвердения правильно подобранной уплотненной смеси связующих веществ (цемент, песок, щебень, вода и др. заполнители). Для увеличения способности к противостоянию агрессивным средам и усиления прочностных свойств используют специальные добавки. Смесь всех этих компонентов до того, как она затвердела, принято называть смесью.

Каменная основа образуется за счет песка и щебня. После добавления в смесь воды образуется цементное тесто, которое заполняет промежутки между песком и щебнем, обво­лакивая их, и выполняет изначально функцию смазки для заполнителей, при помощи которой смесь становится подвижной (текучей). В процессе отвердения зерна заполнители связываются, образуя искусственный монолитный камень, называемый бетоном. При сочетании с арматурой из стали получаемую конструкцию называют железобетонной.

Оценка прочности бетона различными методами

Так как прочность бетона является самой важной характеристикой, от которой зависит прочность сооружения, конструкторами и технологами разработаны и активно применяются следующие варианты испытаний бетона на прочность:

  • Неразрушающие механические методы контроля. Основаны на опосредственной оценке технической характеристики, полученной методами: упругого отскока, удара, и отрыва со скалыванием.
  • Определение прочности бетона ультразвуковым методом. В этом случае используется специальная ультразвуковая установка, которая «просвечивает» проверяемую конструкцию и определяет прочность бетона в зависимости от скорости распространения ультразвуковых волн.
  • Метод разрушающего контроля прочности. Согласно существующим СНиПам разрушающий контроль является обязательным при приемке здания или сооружения в эксплуатацию.
  • Самостоятельный метод определения прочности бетона с помощью подручных материалов и инструментов: молотка, зубила и штангенциркуля.

Перечисленные способы имеют различную степень точности, находящуюся в пределах допускаемой погрешности.

Неразрушающий контроль

Компоненты должны быть чистыми, без примесей, а вода – пресной.

Это такой вид контроля параметров и свойств, который не должен приводить к нарушению пригодности бетона к последующей эксплуатации или использованию. Контроль неразрушающего типа приобретает особую важность при возведении и во время эксплуатации особо важных компонентов, конструкций или изделий.

Проводя определение прочностных показателей при помощи неразрушающих методов контроля, очень важно понимать, что результаты всех этих методов основаны на косвенных характеристиках. Отдать предпочтение тому или иному методу невозможно, они все имеют свои плюсы, минусы и ограничения применения. Для более точного определения передвижная дорожная лаборатория должна быть оснащена аппаратами неразрушающего контроля, включающими все методы контроля. Начальный этап существования здания характеризуется осуществляемым контролем на соответствие линейных размеров проекту и отсутствие значительных отклонений от норм и правил строительства.

Для этого используют:

  • всевозможные линейки;
  • нутромеры;
  • рулетки;
  • скобы;
  • штангенциркули;
  • микроскопы;
  • щупы и др. специальное оборудование.

Отклонения конструкций от допустимых горизонтальных и вертикальных показателей обычно измеряются:

  • нивелиром;
  • теодолитом;
  • поверочной линейкой.

В уже построенных зданиях прочностные показатели отдельных элементов конструкции обычно определяются двумя методами.

  1. В одном из них конструкцию нагружают вплоть до момента ее разрушения, определяя таким образом максимальную несущую способность. Но такой метод является очень дорогостоящим и нецелесообразным с экономической точки зрения.
  2. Намного привлекательнее и более удобнее неразрушающие методы, в которых подразумевается использование специальных приборов для оценки состояния конструкций. Такие случаи подразумевают обработку получаемых результатов и значений с помощью специальных компьютерных программ, позволяющих с достаточной точностью получать значения конечных характеристик.
Читать еще:  Дорожка из бетона на даче своими руками

Допустимая погрешность при проведении испытаний – наиболее весомый фактор определения методов и средств контроля и измерений. При этом очень важны легкость в обработке результатов и удобство в проведении работ.

Неразрушающие методы опираются на косвенные показатели:

  • отпечаток;
  • напряжение, приводящее к частичным (локальным) разрушениям конструкции;
  • энергия, затрачиваемая при ударе.

Подробнее о наиболее часто применяемых методах контроля неразрушающего типа для бетона и др. строительных материалов будет описываться далее.

Механические неразрушающие методы определения прочности бетона

Неразрушающие способы бетона на сжатие основываются на косвенных характеристиках показаний приборов. Испытания прочности бетона проводятся с помощью основных методов: упругого отскока, ударного импульса, отрыва, скалывания, пластической деформации, отрыва со скалыванием.

Зачем нужны добавки в бетон для прочности и как их выбирать?

О том, какие существуют марки бетона по прочности, в этой статье рассказывают специалисты.

Закажите лучший бетон М200 для строительства и изготовления стяжек полов, дорожек, бетонных лестниц.

Рассмотрим виды испытательных приборов механического принципа действия. Таким способом прочность бетона определяется глубиной внедрения рабочего органа прибора в поверхностный слой материала.

Принцип действия молотка Физделя основан на использовании пластических деформаций строительных материалов. Удар молотка по поверхности бетона образует лунку, диаметр которой и характеризует прочность материала. Место, на которое наносятся опечатки, должно быть очищено от штукатурки, шпатлевки, окрасочного слоя. Испытания проводятся локтевыми ударами средней силы по 10-12 раз на каждом участке конструкции с расстоянием между отпечатками не менее 3 см. Диаметр полученных лунок измеряется с помощью штангенциркуля по двум перпендикулярным направлениям с точностью до десятой миллиметра. Прочность бетона определяется с помощью среднего диаметра отпечатка и тарировочной кривой. Тарировочная кривая строится на сравнении полученных диаметров отпечатков и результатов лабораторных исследований на образцах, взятых из конструкции или изготовленных по технологиям, аналогичных примененным.

На свойствах пластической деформации основан и принцип действия молотка Кашкарова. Различие между этими приборами заключается в наличии между молотком и завальцованным шариком отверстия, в которое введен контрольный стержень. Удар молотка Кашкарова приводит к образованию двух отпечатков. Одного — на поверхности обследуемой конструкции, второго — на эталонном стержне. Соотношение диаметров получаемых отпечатков зависит от прочности исследуемого материала и контрольного стержня и не зависит от скорости и силы удара молотка. По среднему соотношению диаметров двух отпечатков с помощью тарировочного графика устанавливают прочность бетона.

Пистолеты ЦНИИСКа, Борового, молоток Шмидта, склерометр КМ, оснащенный стержневым ударником, работают, основываясь на принципе упругого отскока. Измерения величины отскока бойка проводятся при постоянной величине кинетической энергии металлической пружины и фиксируются указателем на шкале прибора. Взвод и спуск бойка происходят автоматически при соприкосновении ударника и испытуемой поверхности. Склерометр КМ имеет специальный боек определенной массы, который с помощью предварительно напряженной пружины с заданной жесткостью ударяет по металлическому ударнику, прижатому другим концом к обследуемой поверхности.

Метод испытания на отрыв со скалыванием позволяет определить прочность бетона в теле бетонного элемента. Участки для испытания подбираются таким образом, чтобы в этой зоне не было арматуры. Для проведения исследований используют анкерные устройства трех типов. Анкерные устройства первого типа устанавливаются в конструкцию при бетонировании. Для установки второго и третьего типов анкерных устройств предварительно подготавливают шпуры, высверливая их в бетоне.

Контроль прочности бетона методом отрыва со скалыванием

Рис. 3. Испытание бетона методом отрыва со скалыванием

Данный метод имеет много общего с описанным выше методом отрыва. Основным отличием является способ крепления к бетону. Для приложения отрывающего усилия используются лепестковые анкеры различных размеров. При обследовании конструкций анкеры закладываются в шпур, пробуренный на участке измерения. Так же, как и при методе отрыва, измеряется разрушающее усилие (Р). Переход к прочности бетона на сжатие осуществляется по указанной в ГОСТ 22690 зависимости:

где m1— коэффициент, учитывающий максимальный размер крупного заполнителя, m2 — коэффициент перехода к прочности на сжатие, зависящий от вида бетона и условий твердения.

В нашей стране данный метод нашел, пожалуй, самое широкое распространение благодаря своей универсальности (табл.1), относительной простоте крепления к бетону, возможности испытания практически на любом участке конструкции. Основными ограничениями для его применения являются густое армирование бетона и толщина испытываемой конструкции, которая должна быть больше, чем удвоенная длина анкера. Для выполнения испытаний могут использоваться приборы, указанные выше.

Помимо более простого и быстрого крепления к бетону конструкции по сравнению с методом отрыва, не требуется обязательное наличие ровной поверхности. Главным условием является необходимость того, чтобы кривизна поверхности была достаточной для установки прибора на тягу анкера. В качестве примера на рис. 3 представлен прибор ПОС-МГ4, установленный на деструктированную поверхность устоя гидротехнического сооружения.

Определение прочности бетона с помощью ультразвука

Технология использует связь, которая существует между скоростью распространения ультразвуковых импульсов и прочностью бетонной конструкции. Для реализации метода необходимо специальное оборудование, состоящее из генератора ультразвуковых волн, блока управления и датчиков.

Кроме прочности бетона, приборы ультразвукового исследования позволяют определять дефекты, однородность, модуль упругости и плотности толщи исследуемого объекта.

Контроль прочности бетона методом скалывания ребра

Последним прямым методом неразрушающего контроля является модификация метода отрыва — метод скалывания ребра. Основное отличие заключается в том, что прочность бетона определяют по усилию (Р), необходимому для скалывания участка конструкции, расположенному на внешнем ребре. В нашей стране долгое время выпускались приборы типа ГПНС-4 и ПОС-МГ4 Скол, конструкция которых предполагала обязательное наличие двух рядом расположенных внешних углов конструкции. Захваты прибора подобно струбцине крепились на испытываемый элемент, после чего через захватывающее устройство прилагалось усилие к одному из ребер конструкции. Таким образом, испытание можно было проводить только на линейных элементах (колонны, ригели) или в проемах на краях плоских элементов (стены, перекрытия). Несколько лет назад была разработана конструкция прибора, которая позволяет устанавливать его на испытываемый элемент с наличием только одного внешнего ребра. Закрепление осуществляется к одной из поверхностей испытываемого элемента при помощи анкера с дюбелем. Данное изобретение несколько расширило диапазон применения прибора, но одновременно с этим уничтожило основное преимущество метода скалывания, которое заключалось в отсутствии необходимости сверления и потребности в источнике электроэнергии.

Прочность бетона на сжатие при использовании метода скалывания ребра определяется по нормированной зависимости:

где m — коэффициент, учитывающий крупность заполнителя.

Таблица 2. Сравнительные характеристики прямых методов неразрушающего контроля

Неразрушающий контроль прочности бетона: методы измерения, проверки

Неразрушающий контроль бетона – это группа методов испытаний материала, благодаря которым можно определить его технические характеристики без нарушения целостности и явных деформаций. Определение прочности бетонного монолита является обязательным условием контроля качества бетонных и ЖБ изделий/конструкций в процессе производства.

Неразрушающий контроль прочности бетона дает возможность выявить все самые важные значения, напрямую влияющие на эксплуатационные характеристики монолита и безопасность, длительность службы изделий. На прочность бетонного монолита влияет множество факторов – таких, как качество и пропорции компонентов, соблюдение технологии производства смеси, условия заливки, правильность сушки и т.д.

По прочности бетона устанавливается его марка – к примеру, марка М400 может выдержать максимальную нагрузку в районе 400 кг/см2, марка М500 – 500 кг/см2 и т.д.

Обычно испытание бетона на прочность предполагает приложение к застывшему материалу контрольной нагрузки, которая направлена на разрушение целостности структуры. Таким образом определяют, какие максимальные значения нагрузок способен выдержать бетон, для каких условий подходит, в каких конструкциях может использоваться.

Разрушающие методы предполагают отбор проб бетона с обследуемого монолита или приготовление из жидкой смеси контрольных образцов, а потом их разрушение. Кроме того, существуют неразрушающие методы, которые не предусматривают деформации и явной порчи структуры материала.

Основные методы испытания бетона на прочность:

  1. Разрушающие методы – используют контрольные образцы, которые готовятся и твердеют так же, как и конструкция (либо изымаются из монолита), воздействуют на них разными силами. Это самая точная проверка.
  2. Неразрушающие косвенные методы – ультразвуковые исследования, методы ударного импульса и упругого отскока. Прочность оценивается косвенно через иные параметры (скорость ультразвука, к примеру), погрешность в полученных данных может составлять 30-50%.
  3. Неразрушающие прямые методы – это могут быть отрыв металлического анкера (заделанного предварительно в бетон), использование специального оборудования (измерение скалыванием ребра и другие).
Читать еще:  Облицовка дома панелями под кирпич

Неразрушающие технологии контроля прочности бетона

Испытание бетона неразрушающим методом предполагает оценку состояния бетонных конструкций через анализ различных факторов, что влияют на прочность, диаметр арматуры, толщину защитного слоя, влажность, теплопроводность, адгезию и т.д. Особенно актуален данный тип исследований в случаях, когда не известны характеристики бетонного монолита и арматуры, а вот объемы контроля большие.

Указанная группа методов позволяет выполнять исследования как в условиях лаборатории, так и непосредственно на строительной площадке и даже в процессе эксплуатации.

Главные преимущества неразрушающего контроля:

  • Сохранение целостности конструкции, которая проверяется.
  • Возможность избежать необходимости организовывать лабораторную оценку непосредственно на строительном объекте.
  • Полное сохранение эксплуатационных свойств зданий и сооружений.
  • Достаточно широкая сфера применения.

Несмотря на то, что методов и способов исследования жидкого и застывшего бетона очень много, характеристик также немало, основным свойством и показателем является прочность. Именно от прочности зависят сфера применения и условия эксплуатации, надежность и долговечность конструкции. Так, например, если бетон будет морозостойким и пластичным при заливке, с лучшими разноплановыми характеристиками, но недостаточно прочным для выдерживания проектных нагрузок, здание просто обрушится.

Прочность – определяющий фактор бетона и проверять ее нужно очень тщательно. Все испытания проводят на базе ГОСТов: 22690-2015, 17624-2012 (процедура обследований), 18105-2010 (описаны общие правила проверки). Использование неразрушающих методов предполагает применение механических способов (вдавливание, скол, отрыв, удар) и ультразвукового исследования.

Исследование неразрушающего контроля бетона осуществляется по графику, обязательно в установленном проектом возрасте или же по необходимости. Благодаря исследованиям удается оценить отпускную/распалубочную прочность, сравнить полученные реальные показатели свойств материала с паспортными.

Используемые методы неразрушающего контроля:

  1. Прямые (местные разрушения) – скалывание ребра, выполнение отрыва со скалыванием, отрыв диска из металла.
  2. Косвенные – упругий отскок, ударный импульс, использование пластической деформации, а также метод ультразвукового исследования.

Прямые неразрушающие методы контроля прочности бетона:

  • Отрыв со скалыванием – оценивается усилие, нужное для разрушения бетона в процессе вырывания из него анкера. Из преимуществ стоит отметить высокий уровень точности, наличие градуировочных зависимостей по ГОСТу, из недостатков – невозможность применять для оценки густоармированных и тонкостенных сооружений, трудоемкость.
  • Скалывание ребра – измеряется усилие, нужное для скалывания бетона в углу конструкции. Обычно способ используют для выявления прочности линейных сооружений (колонны квадратного сечения, сваи, опорные балки). Главные плюсы метода – простота реализации, отсутствие необходимости в предварительной подготовке, минусы – не применяется для бетона слоем больше 2 сантиметров и поврежденного монолита.
  • Отрыв металлического диска – фиксируют усилие, разрушающее бетон в момент отрыва от него диска из металла. Метод использовали часто в советское время, сегодня практически не применяют из-за наличия ограничений в плане температурного режима. Достоинства: можно проверять густоармированные конструкции, низкий уровень трудоемкости, недостатки – необходимость в предварительной подготовке (диски клеят на поверхность бетонного монолита за 3-24 часа до начала проверки).

Главные недостатки местных разрушений для измерения прочности бетона – необходимость рассчитывать глубину пролегания арматуры, высокая трудоемкость, частичное повреждение поверхности монолита, что может (пусть и несущественно) влиять на эксплуатационные свойства.

Методы ударно-импульсного воздействия более производительны, но проверяют лишь верхний слой бетона толщиной в 25-30 миллиметров, поэтому их применение ограничено. Поверхность нужно зачистить, удалить поврежденный слой, привести градуированные зависимости приборов в полное соответствие с фактической прочностью монолита по результатам испытаний в прессе контрольных партий.

Для измерения прочности бетона часто используют метод ударного импульса – наиболее распространенный вариант, который дает возможность выявить класс бетона, выполняя исследования под различными углами к поверхности, с учетом упругости и пластичности материала.

Боек со сферическим ударником благодаря пружине ударяется о поверхность бетона, при этом энергия удара тратится на его деформацию, появляется лунка (пластические деформации) и реактивная сила (упругие деформации).

Электромеханический преобразователь механическую энергию выполненного удара превращает в электрический импульс, реальные результаты получают в единицах определения прочности на сжатие. Для исследований используют молоток Шмидта.

Особенности метода упругого отскока:

  • В испытаниях используют склерометры – специальные пружинные молотки со сферическими штампами. За счет системы пружин реализуется свободный отскок после удара. Фиксация пути ударника при отскоке осуществляется по шкале со стрелкой.
  • Прочность материала определяют по градуированным кривым, учитывающим положение молотка, ведь величина отскока напрямую зависит от направления.
  • Средний показатель исследований считают по данным 5-10 выполненных измерений, между местами ударов расстояние должно быть равно минимум 3 сантиметрам.
  • Диапазон измерений методов – 5-50 МПа, используются специальные приборы.
  • Главные преимущества: простота/скорость исследований, возможность оценить прочность густоармированных изделий. Недостатки: определение прочности бетона реализуется в поверхностном слое глубиной 2-3 сантиметра, проверки нужно делать часто и много.

Проверка прочности бетона методом пластической деформации – самый дешевый способ, определяющий твердость поверхности бетона измерением следа, оставленного стальным стержнем/шариком, что встроен в молоток. Молоток располагают в перпендикулярной плоскости поверхности монолита, делают пару ударов. Отпечатки на бетоне и бойке измеряют. Полученные данные фиксируют, ищут среднее значение, по полученному соотношению размеров отпечатков определяют характеристики бетонной поверхности.

Прибор для исследований способом пластических деформаций работает на вдавливании штампа ударом или статическим давлением. Редко применяют устройства статических давлений, чаще используются приборы ударного действия (пружинные/ручные молотки, маятниковые устройства с дисковым/шариковым штампом).

Выдвигаются такие требования: диаметр шарика минимум 1 сантиметр, твердость стали штампов хотя бы HRC60, диск толщиной минимум 1 миллиметр, энергия удара 125 Н и более. Метод простой, подходит для густоармированных конструкций, быстрый, но используется для определения прочности бетона марки максимум М500.

Самым сложным считается контроль конструкций, на которые воздействуют агрессивные среды (химические в виде кислот, солей, масел, термические в формате высоких/низких температур, атмосферные – карбонизация верхнего слоя).

При проведении обследования простукиванием и визуально, смачиванием раствором фенолфталеина ищут слой с нарушенной структурой, удаляют его на участке для контроля, зачищают наждачной бумагой. Потом определяют прочность способами отбора образцов или местных разрушений. В случае использования ультразвуковых и ударно-импульсных приборов шероховатость поверхности монолита должна быть максимум Ra 25.

Испытание бетона методом неразрушающего контроля ГОСТ 17624-2012

Ультразвуковой метод проверки прочности бетона заключается в регистрации скорости прохождения волн сквозь монолит. Есть сквозное ультразвуковое прозвучивание с установкой датчиков с разных сторон касательно тестируемого образца, а также поверхностное с креплением датчиков по одной стороне. Метод сквозной дает возможность контролировать прочность не только поверхностных, но и глубоких слоев конструкции.

Ультразвуковые приборы контроля используют для дефектоскопии, проверки качества бетонирования, выявления глубины залегания арматуры в бетоне и самого монолита. Устройства дают возможность многократно исследовать разные формы, осуществлять непрерывный контроль снижения/нарастания прочности.

С учетом высокой скорости прохождения ультразвука в монолите материала (около 4500 м/с), градуировочная зависимость скорости волны и прочности бетона считается для каждого испытуемого состава предварительно. Использование двух градуированных зависимостей в отношении конкретного бетона и непонятного состава может дать большую ошибку.

Основной особенностью проверки прочности бетона неразрушающим ультразвуковым методом является возможность осуществлять массовые исследования изделий любой формы многократно, эффективно вести непрерывный контроль нарастания/снижения прочности конструкции в онлайн-режиме.

Виды испытаний: таблица значений

Каждая технология неразрушающего контроля прочности бетона предполагает свои диапазоны значений и рекомендованные значения прочности на сжатие. Максимальные значения измерений регламентируют полученными производителями приборов и эмпирическими результатами. Для более удобной интерпретации данных исследований диапазоны и погрешности сводятся в таблицах.

Прочность бетона обычно определяют на участках поверхности монолита нужной площади, на которых отсутствуют видимые повреждения и аморфные отслоения, температура окружающего воздуха должна быть плюсовой.

Заключение

Для определения прочности бетона актуально использование разнообразных неразрушающих методов, которые дают возможность быстро и без серьезных финансовых затрат проверить все нужные значения и не разрушать изделие/конструкцию. Наиболее актуальными методиками сегодня считаются упругий отскок и пластическая деформация.

Все затраты на проверку составляют стоимость покупки прибора. Для проведения вышеуказанных исследований применяют склерометр Шмидта или молоток Кашкарова. Стоимость данных приборов не очень высока, а аренда обходится и того меньше.

При выборе того или иного метода проверки прочности бетона нужно тщательно изучить особенности анализа и интерпретации результата, свести все значения в таблицы и определить искомые значения.

Ссылка на основную публикацию
Adblock
detector