Инъецирование трещин в бетоне

Технология инъектирования бетона — используемые материалы и этапы работ

В процессе эксплуатации сооружений возникают разного рода проблемы, требующие реставрационных работ. Инъектирование бетона — современная строительная технология, позволяющая вводить под давлением ремонтные смеси, используя специальные проводники (пакеры), в обнаруженные повреждения. Восстановление гидроизоляции, герметизации, несущей способности здания, заполнение деформаций — краткий перечень области применения.

Это отличная альтернатива капитальному ремонту и возможность сэкономить средства, выгодно продлив срок службы конструкции.

Когда необходимо инъектирование?

Методика позволяет при любых температурных условиях и в сжатые сроки полноценно герметизировать поверхности без демонтажа сооружения. Ремонт бетона возможен в малодоступных местах разных видов деформаций. Из частных вариантов можно привести следующие примеры:

  • восстановление и укрепление фундамента;
  • исправление деформации швов;
  • инъектирование трещин в поверхностях (пол, стены, потолок);
  • гидроизоляция.

Материалы для инъекции

Вещества, применяемые как инъекции в бетон, глубоко заполняют мельчайшие расслоения и трещины, отлично сцепляются с окружающими стройматериалами, прочно затвердевают с последующей низкой усадкой, обеспечивая тем долговечность ремонтируемому объекту. Такими свойствами наделены следующие эффективные инъекторы:

  • смолы — эпоксидная, полиуретановая;
  • полицементные смеси;
  • гидроизолирующие составы.

Эпоксидная смола

К особенностям, отличающим материал от других, относят:

  • химическую устойчивость к различным реагентам;
  • быстрое затвердевание с высокой прочностью;
  • возрастание объема в 3 раза от контакта с водой;
  • высокую адгезию смолы и бетона;
  • возможность применения без растворителей.

Перед стартом ремонтного процесса выполняются расчеты расхода материалов.

Перечисленные характеристики определяют область применения материала. Это — сухие швы и мелкие трещины (от 0,5 см), восстановление прочности фундамента, гидроизоляция. Недостатком является высокая стоимость, поэтому до начала работ целесообразно сделать уточненные расчеты с учетом площади повреждения и объемов ремонта.

Полиуретановая смола

Она включает 2 компонента — основу и вещество для затвердевания. Предварительно или во время подачи они смешиваются, образуя инъект. Основное достоинство полиуретана — водонепроницаемость, поэтому используется он для гидроизоляции конструкций, где высока влажность (канализации, водопроводы), для «лечения» железобетонных монолитов, остановки водопритока.

Полицементные смеси

Другое название — микроцемент. Это специализированный портландцемент, измельченный до состояния, позволяющего проникать в микропоры и заполнять полости. Состав обогащают добавками, которые обеспечивают дополнительные свойства смеси, например, ускорение схватывания. Применяют для устранения трещин от усадки, течи, а также для усиления старой основы здания, на которую устанавливаются новые элементы.

Гидроизолирующие составы

К ним относят акриловые и метакриловые гели. Сооружения, расположенные ниже уровня земли или те, которым необходима дополнительная влагоизоляция, ремонтируются с помощью этих составов. Для них характерно:

  • заполнение мельчайших (0,1 см) и глубоких трещин;
  • работа в условиях низких температур;
  • химическая инертность;
  • значительное набухание во влаге;
  • высокая эластичность;
  • способность подсушивать стенки заполняемой полости.

Инструменты

Для введения выбранного состава в камень используют специальное оборудование — насосы для инъектирования бетона, пакеры, контролирующие и запорные механизмы. Насосы создают давление, нагнетающее растворы. Смолы и микроцемент требуют насосов разной мощности. При небольших площадях ремонта обходятся ручным экземпляром. Пакеры для инъектирования бетона представляют собой трубки, которые монтируются в отверстия или на поверхность ремонтируемого объекта. Через систему шлангов к ним под давлением подается раствор и вводится в участок дефекта. Пакеры вариабельны по длине, материалу изготовления и конфигурации, выбираются согласно поставленному заданию.

Этапы работы

Начинают с диагностики состояния сооружения, пытаясь найти причину нарушений целостности. Определяются с оборудованием и составами для инъектирования, приводя все в рабочее состояние. Технология ремонтной операции состоит из следующих моментов:

  1. Подготовительный этап.
  2. Крепление пакеров.
  3. Введение раствора.
  4. Заключительные работы.

Предварительные мероприятия

  1. Поверхность очищают от грязи, протирают, продувают воздухом.
  2. Магнитным методом исследуют каркас здания. На поверхность наносят линии, обозначающие проекцию арматуры, чтобы не повредить ее во время сверления.
  3. Выполнение отверстий. Глубина должна соответствовать длине пакера + 1 см, размещение по отношению к трещине — шахматный порядок, промежуток — 70 см — 1 м.
  4. Продувание отверстий сжатым воздухом.

Мусор, ржавчина, старый материал играют роль промежуточного слоя и препятствуют затвердеванию смеси.

Монтаж пакеров

Крепление трубок включает разный перечень работ в зависимости от их вида, типа дефекта и целей. Правильная установка пакеров обеспечивает равномерное и полное распределение состава в объекте и восстановление его целостности. По типу заполнения выделяют вертикальный, горизонтальный и потолочный направления введения.

Во время инъектирования важно контролировать расход материала и давление закачки. При повышении количества раствора на трубку без увеличения давления работу надо остановить. По окончании введения все инструменты удаляют, отверстия заделывают ремонтным составом. После полного застывания наносят декоративный (в квартире) или изолирующий слой.

Технология креплений в примерах ремонта

В таблице представлены варианты монтажа пакеров в различных ситуациях:

Технология инъектирования бетонных поверхностей

Инъекции в бетон — новая, одна из самых эффективных технологий, которая позволяет отремонтировать объекты, устранить видимые и невидимые дефекты. Заключается данная технология в том, что пустоты, трещины по бетону заполняются специально разработанными полимерными составами, которые нагнетаются давлением. Имея определенную сноровку, обладая необходимыми знаниями, инъектирование бетона можно произвести самостоятельно, это дает возможность избежать капитального ремонта, что существенно экономит время и деньги.

Какие части поддаются инъектированию?

С помощью инъектирования в бетон можно решить проблему, связанную с гидроизоляцией подвального помещения, тоннеля. Особенно это актуально, когда конструкции на бетоне дают течь. В этом случае эффективным окажется применения акрилатных гелей. Применение метода возможно как на напольных покрытиях, так и на стенах.

Следующая область применения технологии — восстановление фундамента, при возведении которого использовались «холодные швы». Если между частями, которые прилегают, имеется мусор, который может повлиять на адгезию, гидроустойчивость может быть утрачена.

Кроме того, методика применима к местам, в которых имеется деформация швов. Чаще всего это касается парковок, подземок.

Ремонту таким методом подлежат и фундаменты, выполненные из блоков, которые усиливают и обеспечивают гидроизоляционные свойства конструкции. Сделав инъекцию, можно легко заполнить трещины (даже самые маленькие, практически незаметные) в любой части железобетонной или бетонной конструкции.

Среди главных преимуществ метода:

  • сохраняет целостность конструкционного дизайна;
  • моментально гидроизолирует и герметизирует;
  • времени на работу тратится минимум;
  • метод помогает восстановить и укрепить даже самые труднодоступные участки постройки;
  • выполнять работу можно круглый год, не взирая на погодные условия;
  • исключает проведение земляных работ;
  • возможность проведения работы в любой плоскости — фундамент, стены, потолок, пол и так далее.

Вернуться к оглавлению

Материалы для инъектирования

Заполняют трещины разной технологией, используют:

  • эпоксидные смолы;
  • полимерцементные составы;
  • полиуретан.

Главные требования к растворам: они должны быть слабовязкими, хорошо проникать в трещину, не реагировать на температуры извне. Кроме того, составы должны отвечать следующим главным требованиям:

  • минимально усаживаться во время затвердения;
  • обладать хорошей адгезией к разным материалам, в т.ч. к металлу;
  • не стареть;
  • не поддаваться коррозивным явлениям.

Выбирать инъекционные материалы следует до того, как начнете производить работу, это позволит запастись необходимым оборудованием.

Эпоксидные смолы

Их применяют, чтобы заполнить трещины в разных бетонных основаниях, особенно тех, которые должны обладать максимальной прочностью. Смолы способны мгновенно проникнуть даже в самые мелкие трещины, толщиной до половины миллиметра. Это гарантирует максимальную плотность наполнения. После ремонта восстановятся несущие способности и структурные прочности бетонных конструкций.

Использование полицементных составов

Их использование целесообразно, если повреждения очень большие — в этом случае использовать эпоксидную смолу дорого и нерационально. Полицементные материалы повышают плотность строений из бетона, укрепляются конструкции (новые и старые).

Читать еще:  Штукатурка по газобетону для внутренних работ

При инъектировании происходит подача специального цементного раствора под высоким давлением, это дает возможность составу проникнуть в каждую полость, пору, даже скрытые. Этот метод инъектирования применяется при реставрационных работах, связанных с восстановлением фундаментов, в которых появляются трещины в результате усадки здания.

Гидроизолирующие составы

Полиуретан используют, чтобы защитить конструкцию от возможного проникновения влаги. Именно этот материал — отличный гидроизолятор. Им заполняют швы и стыки между монолитными деталями, обрабатывают особенно влажные участки, изолируют отверстия и трещины в сетях водопровода и канализации.

Поэтапная инъекция

В работе используется оборудование для инъектирования бетона: пакеры и насосы. Технологию делят на несколько важных этапов:

  1. Подготовительный (готовится к процессу поверхность).
  2. Заполнение трещин.
  3. Нанесение последнего слоя.

Вернуться к оглавлению

Подготавливаем поверхность

В инструкции о проведении работы сказано, что перед тем, как ввести уплотняющую смолу, нужно обязательно и хорошо подготовить поверхность конструкции из бетона. Подготовка включает:

  1. Просверливание отверстия. Сделать это нужно вдоль трещины, использовать — перфоратор. Отверстия обязательно должны располагаться шахматно, иметь направление к дефектам, быть настолько глубокими, чтобы достигнуть полости и пустоты в монолите.
  2. Вставка пакера в отверстия. Это специальные трубочки, через которые происходит подсоединение оборудования для инъектирования. По этим трубкам будет подаваться смесь. Очень важно правильно разместить пакеры и трубки. Только при правильно установленном пакере состав правильно распределится, заполнит пустоту, восстановит целостность строения.

Вязкость материала влияет на давление подаваемого состава!

Если перелить состав, можно усугубить ситуацию — трещины расширятся, прочность монолитного сооружения нарушится.

Заполняем пустоты в трещинах

Легче всего справиться с дефектами, не превышающими пол миллиметра. Еще одно условие — отсутствие коррозии на конструкции. Это обеспечит быстроту работы, ее качество даже в том случае, если применяется ручной инъектор. Если коррозия обнаруживается, бетонная плита расслаивается, следует зачистить поверхность, сделать это можно шлифовальной машинкой. Если от дефектов не избавиться, раствор не застынет правильно, трещины только увеличатся.

Схемы заполнения (зависят от того, где именно располагается трещина):

  1. Вертикальные. Инъектируют с нижних точек, заканчивают — верхними.
  2. Горизонтальные. Можно инъектировать сразу с двух сторон, от центральной точки к крайним или слева направо.
  3. Потолочные. Работа аналогична предыдущей, смола не вытечет из отверстий, потому что она вязкая.

Вернуться к оглавлению

Наносим последний слой

Когда заливка будет закончена, отсоедините трубки, пакеры закройте специальными пробками. Отреставрированное место нужно закрыть пленкой, ее не снимают до полного застывания состава (от пары дней до недели).

После того, как пленка будет снята, наносят изолирующий или декоративный слой — он скроет следы ремонта.

Тонкости гидроизоляционной работы

Если ваша цель — гидроизолировать объект, работу следует проводить в два этапа:

  1. Сперва закачайте в трещины полиуретан — он перекроет доступ влаге, образуя пористую структуру.
  2. Подайте через пакеры эпоксидную смолу, когда полиуретан застынет — она заполнит пустоту, полиуретановые поры, таким образом структура станет прочной и целостной.

Вернуться к оглавлению

Цена вопроса

Стоимость материалов колеблется, зависит от производителя, сырьевого качества и других факторов. Однако посчитать примерно можно.

Итак, минимальная розничная цена килограмма смолы 800 р., пакер стоит 50 р. (чем больше размеры, тем дороже). Защитная лента обойдется примерно 400 р. за рулон (цена зависит от ширины и длины). Таким образом, минимальная стоимость технологий инъектирования 1250 рублей.

На выбор способа инъектирования напрямую влияет то, каким образом предполагается эксплуатировать конструкцию, причины разрушения. Только проанализировав все нюансы, вы сможете выстроить правильную тактику решения проблемы, выбрать материал и схему инъектирования.

Инъектирование бетона: методы, технология

Инъектирование бетона представляет собой одно из наиболее технологически эффективных решений при ликвидации дефектов герметизации деформационных и технологических швов, сквозной фильтрации влаги, а также восстановления и упрочнения конструкций. Инъецирование заключается в нагнетании ремонтных смесей, через специальные устройства (пакеры), в трещины, холодные швы и другие пустоты, образовавшиеся в момент укладки или в период эксплуатации конструкций (см. видео в этой статье).

Общие сведения

Успешный ремонт конструкций начинается с точной и правильной оценки состояния и определения причин их повреждений. Все последующие этапы восстановления и защиты напрямую зависят от решения этих вопросов.

Виды дефектов и факторы, влияющие на их появление

Образование трещин в эксплуатируемых зданиях является следствием многих причин. В зависимости от прогнозируемой опасности, такие дефекты делятся на конструктивные и не конструктивные.

Конструктивные влияют на прочность сооружения и могут возникать в результате следующих факторов, это:

  • ошибки проектирования;
  • просчеты строительства;
  • подвижка грунта;
  • осадка фундаментов.

Не конструктивные — наиболее распространенный вид трещин, которые по своему виду могут быть:

На образование данных дефектов влияют следующие моменты:

  • усадка;
  • внутренние напряжения, происходящие в момент гидратации цемента;
  • температурные деформации;
  • колебания влажности;
  • коррозия арматуры;
  • механические воздействия.

В зависимости от причины образования и величины раскрытия трещин, выбирается способ и материалы для инъектирования монолита.

При выборе способа ремонта важно учитывать:

  • подвижность дефекта;
  • величину раскрытия трещины;
  • показатель агрессивности среды в которой эксплуатируются конструкции;
  • температуру ремонтируемых покрытий;
  • параметры ремонтных смесей (соответствие условиям применения).

Способы устранения дефектов

Инъекция бетона — не новый способ ремонта покрытий. Сам механизм выполнения данной процедуры остается неизменным уже много лет. Усовершенствуется лишь оборудования и применяемые материалы.

В зависимости от используемых материалов, каждый применяемый способ получил свое индивидуальное обозначение:

  1. Цементация — это метод устранения дефектов при помощи цементных смесей. Раствор производится на основе воды, тампонажного цемента или портландцемента — марок не ниже М400.
  2. Смолизация представляет собой метод введения в трещины композиций из эпоксидных смол, что представляет собой эффективный способ повышения прочности конструкций.
  3. Битумизация производится путем нагнетания в конструкции, нагретого до 200°С, битума. Сама по себе битумизация не повышает прочность, но существенно увеличивает водонепроницаемость изделий.
  4. Процесс силикатизации вмещает в себя два этапа. Вначале, в трещины нагнетают жидкое стекло, а затем вводят хлористый кальций. В результате химической реакции между этими реагентами, образуются труднорастворимые вещества, которые заполняют все образовавшиеся пустоты.

В последнее время при реконструкции объектов, для повышения эксплуатационного ресурса и увеличения надежности конструкций, внедряются новые методики и материалы.

Наиболее перспективными направлениями в технологии инъектирования, являются полимерные и геополимерные композиции на основе:

Характеристика материалов для производства работ

Инъекционные материалы на полимерной основе подчиняются требованиям европейского стандарта EN 1504 и широко используются для ремонта и заполнения пустот во всех элементах конструкций.

По классификации данного стандарта смеси разделяются на три категории:

  1. «F» — растворы на эпоксидной основе, применяемые для ремонта несущих элементов конструкций на объектах гражданского и промышленного строительства, таких как плиты перекрытий, балки, колонны и др.
  2. «D» — материалы на основе полиуретановых компонентов. Используются для герметизации активных расширяющихся трещин в конструкциях, которые не выполняют несущих функций.
  3. «S» — смеси на акриловой и полиуретановой основах, применяемые для герметизации и устранения активных течей. Могут использоваться в комплексе с материалами групп «F» и «D», выступающими в этой связке как материалы для финишной отделки.

Все вышеперечисленные категории материалов должны отвечать следующим требованиям:

  • иметь постоянную эластичность;
  • обладать гидроизолирующей способностью;
  • время твердения композиции должно соответствовать техническим условиям применения;
  • иметь достаточную вязкость (текучесть) для дефектов различной глубины и расширения;
  • высокая адгезионная и механическая прочность;
  • универсальность использования (сухие, влажные основания и пр.).

Помимо этих требований, при выборе смесей, необходимо учитывать следующие факторы:

  • доступная цена;
  • расход материала;
  • опыт использования выбранной марки;
  • возможность применения в конкретных условиях строительной площадки;
  • стойкость к эксплуатационным условиям:
  • на данный материал должна быть инструкция для применения своими руками.
Читать еще:  Газобетон своими руками в домашних условиях

Растворов, для инъецирования великое множество, а тем более, учитывая вышеперечисленные рекомендации, материал необходимо подбирать в каждом конкретном случае отдельно. Главным направлением любых материалов для данного вида работ является гидроизоляция и восстановление прочностных характеристик сооружений. А другие особенности — на усмотрение заказчика.

Оборудование и порядок выполнения работ

Наилучших показателей качества ремонта можно достичь при использовании только специальных инструментов и оборудования.

В первую очередь это относиться к следующим устройствам:

  • пакеры для инъектирования бетона;
  • насосы для нагнетания состава;
  • система трубопроводов;
  • контролирующая и запорная аппаратура.

Инъекторы для бетона (пакеры) — это вид приспособлений, монтируемых в инъекционном отверстии (шпуры) либо на поверхности объекта для последующего подключения к ним системы подводящих шлангов, предназначенных для нагнетания специального раствора в дефектные участки конструкций. Для каждого конкретного случая, как и в примере с материалами, комплект оборудования (шланги, пакеры, насосы, запорная арматура и пр.) выбирается в соответствии с поставленной задачей.

Порядок производства работ

Технология инъектирования трещин должна включать следующие операции:

  • подготовительные работы;
  • монтаж пакеров;
  • приготовление растворов;
  • инъецирование;
  • заключительные работы.

Подготовка

До начала проведения подготовительных работ проводят исследование поверхности и определяют количество и местоположение отверстий. Шпуры размечаются в местах с наибольшей концентрацией трещин. Количество пакеров и отверстий под них определяется с таким расчетом, чтобы заполнить все дефектные участки в полном объеме.

Вся процедура подготовки состоит из следующего комплекса необходимых операций:

  1. Поверхности основания очистить от грязи, протереть чистой ветошью и продуть воздухом.
  2. Проверить и смонтировать оборудование.
  3. При помощи маркера и рулетки выполнить разметку точек установки пакеров.
  4. Магнитным методом провести исследование конструкции на наличие и расположение арматуры. Проекцию арматурного каркаса нанести в виде линий на поверхность пролета во избежание повреждений во время подготовки отверстий.
  5. Далее, в соответствии с разметкой, выполняем сверление отверстий.
  6. Шпуры рекомендовано размещать в шахматном порядке с промежутком 70–100 см.
  7. Глубина отверстия под инъектор должна быть больше на 5-10 мм вставленной длины паркера.
  8. По окончании сверления все подготовленные отверстия продуть сжатым воздухом.

Монтаж пакеров

Виды инъекторов и порядок работ по их установке, в зависимости от типа устраняемого дефекта, могут отличаться друг от друга. Поэтому, ниже будет рассмотрено три основных способа восстановления покрытий.

Первый пример — это ремонт сухих трещин композитными смесями на основе эпоксидной смолы.

Для этой операции понадобятся следующее оборудование и материалы:

  • однокомпонентный электрический поршневой насос;

  • адгезионный пакер с цанговой головкой;

Полость разрыва заделывают эпоксидным раствором, смешанным с песком. Для устранения дефектов, возникающих в густоармированных конструкциях, пользуются адгезионными инъекторами, которые могут быть изготовлены из пластика или металла.

Рассмотрим последовательность производства работ:

  1. Адгезионные пакеры устанавливаются при помощи клея или специального герметика, непосредственно на участок разрыва. Перед его наклейкой в полость трещины вставляется металлический гвоздь, во избежание закупорки канала в момент обмазки герметиком. Когда клей схватиться его удаляют.
  2. К первому пакеру подсоединяют шланг насоса, а на втором снимают обратный клапан и выполняют инъектирование (снизу-вверх). В момент появления жидкости во втором пакере, на него устанавливают обратный клапан и продолжают инъецирование.
  3. Данный процесс повторяют последовательно и с другими инъекторами, до тех пор, пока весь объем ремонтируемой трещины не заполнится раствором.
  4. По окончании процедуры — пакеры удаляются, а отверстия заделываются эпоксидной смесью.

Внимание! — процесс инъецирования следует прекратить при непроизвольном увеличении расхода ремонтной смеси без повышения рабочего давления в трубопроводе.

Второй пример — это заделка активных трещин с протечками.

Оборудование и материалы:

  • электрический поршневой насос (смотрим фото выше);
  • пакер с плоской или цанговой головкой.

Последовательность выполнения работ:

  1. Полость трещины разделывают перфоратором (3×3 см.). Затем шпатлюют ремонтными составами для активных протечек.
  2. По обе стороны линии разрыва, в шахматном порядке и под углом наклона 45°, сверлят шпуры. Промежуток между отверстиями — 15–50 см. Глубина шпуров должна равняться 2/3 толщины стен.

  1. В подготовленные отверстия вставляют инъекторы и затягивают уплотнительные кольца.

Процесс инъектирования — аналогичен вышеописанному способу. По завершению, удаляют приспособления и заделывают отверстия ремонтным раствором.

Восстановление несущих конструкций

Эксплуатирующие организации время от времени сталкиваются с проблемой осадки фундаментов. Причин тому множество — начиная от воздействия грунтовых вод и заканчивая халатностью в период строительства. Для решения подобных проблем используется метод Slab Lifting, разработанный финской компанией URETEK.

Данная методика позволяет не только прекратить проседание, но и вследствие свойств используемых материалов, поднять сооружение до проектного уровня. Секрет этой технологии заключается в применении специальных геополимерных продуктов, способных в кратчайшие сроки набирать оптимальную прочность, тем самым увеличивая несущую способность конструкций.

Целенаправленное инъецирование расширяющихся геополимерных смол предоставляет возможность укрепить, в первую очередь, те слои грунта, которые наиболее пострадали от этого явления. Поскольку, механизм действия данной смеси основан на первоочередном распространении состава в те участки грунта, которые оказывают на тот момент наименьшее сопротивление.

Как только напряженное состояния грунта достигает своего максимального значения возникает эффект «гидроразрыва» (резкое увеличение объема смеси), и в этот момент происходит подвижка фундамента и подъем всего сооружения до проектной отметки.


Подводя итог этой статьи, можно с уверенностью сказать, что инъецирование бетона — перспективный и экономически выгодный способ восстановления конструкций. Благодаря такой технологии, появилась возможность быстро и с минимальными затратами производить ремонт и реконструкцию эксплуатируемых зданий и сооружений.

Инъектирование трещин и швов в бетоне или кирпичной кладке

На протяжении продолжительной истории развития строительного ремесла все методы гидроизоляции сводились, в основном, к созданию между поверхностью конструкции и влажной средой барьерного гидрофобного слоя. Так, еще в глубокой древности стали использоваться глиняные замки. Затем, уже в индустриальную эпоху для подобных целей были созданы разнообразные окрасочные, обмазочные, напыляемые составы и рулонные изделия. Сегодня все они нашли широкое применение во многих сферах человеческой деятельности, ведь каждая группа материалов имеет свой положительный набор монтажных, эксплуатационных и прочих характеристик. Тем не менее, у всех наносимых на поверхности конструкций гидрофобных покрытий имеются общие существенные недостатки:

  • их водоупорные свойства во многом зависят от целостности защитного слоя, который достаточно легко может быть поврежден любым внешним механическим воздействием;
  • обработка обмазками, окрасками, наплавлением гидрозащитных ковров легко организуется на этапе возведения сооружения, но крайне затруднительна в период его эксплуатации. Затруднителен и ремонт поврежденных гидробарьеров. Для его проведения обычно приходится вскрывать часть конструкции или её отделки.

Так было, пока в 80-х годах прошлого столетия не появилась технология инъекционной защиты строительных материалов от проникновения в них влаги. Метод позволяет выполнять адресную обработку гидрофобизатором на расчетной глубине в массиве выбранного элемента либо с его противоположной стороны. При этом задачи гидроизоляции решаются без вскрытия частей сооружения, в недоступных для других методов местах, а также под напорным воздействием жидкости.

Инъекционная гидроизоляция бетона

Область применения инъекционных составов для бетонных конструкций достаточно обширная. Она основывается на официальных нормативах таких, как СНиП 23-02-2003 «Тепловая защита зданий», СТО 00044807-001-2006 «Теплозащитные свойства ограждающих конструкций зданий» и ряда других.

Тем не менее, именно для фундаментов, стен и полов подвалов, тоннелей, подземных резервуаров, прочих заглубленных в грунт объектов, для восстановления свойств ранее заложенной гидрозащиты, этот метод особенно востребован. Инъецирование бетона может также выручить в случае изменения гидрогеологической ситуации в прилегающей к постройке зоне, например, при поднятии уровня грунтовых вод (УГВ), который по проекту рассчитывался ниже.

В общем случае доставка гидрофобизирующего состава к месту назначения осуществляется через пробуренные в массиве конструкции отверстия (шпуры). Направление, наклон и глубина бурения соответствуют преследуемым конечным целям и технологической карте процесса. Например, для создания сплошного слоя (вуального) вертикальной гидроизоляции на внешней стороне стены подвала бурятся сквозные шпуры под углом 90 ° к её поверхности. Если же необходим локальный ремонт бетона (заделка трещин, устранение протечек), то проход шпура заканчивается в проблемной зоне. Далее в подготовленные отверстия вставляются пакеры – трубчатые адаптеры для соединения инъекционного оборудования с заполняемым каналом. Тип пакеров выбирается с учетом материала стены, разновидности нагнетаемого состава и давления его подачи.

Читать еще:  Какой рубероид для гидроизоляции фундамента

Соответственно, используется подходящее для конкретных задач оборудование. Так, гидрофобизатор может вводится:

  • при помощи специальных насосов, создающих давление достаточное для закачки растворов определенной вязкости и проникновения их расчетных объемов (либо до насыщения) в поры (пустоты, полости) конструкции. Для нормального распределения инъекционного состава структура обрабатываемого материала должна обладать влагопроницаемостью не менее 70% либо иметь водонасыщение не менее 50%;
  • с использованием флаконов или бункеров для инъекций без давления. Метод подходит для неглубокой обработки строительных конструкций, широких полостей, материалов с развитой пористой структурой.

Время полимеризации введенного раствора зависит, в первую очередь, от его разновидности, а также местных условий. Оно может составлять несколько минут и даже десятков секунд. После завершения процессов твердения инъекционного геля водопоглощение бетона на обработанном участке становится практически равным нулю.

Инъекционная защита обладает следующими преимуществами:

  • возможностью выполнения при практически любой температуре и уровне влажности;
  • предварительная подготовка поверхности не требуется;
  • возможностью обработки труднодоступных мест.

Трещины в бетоне

Различные виды трещин в бетонных конструкциях довольно распространенное явление. Их появление становится результатом ошибок проектирования или монтажа, следствием естественных усадочных процессов, старения цементного камня либо эксплуатационных нагрузок. При этом далеко не каждая трещина непосредственно приводит к снижению механической прочности монолита, особенно если речь идет об армированных элементах. Однако, если через подобные дефекты просачивается влага, то срок службы конструкции заметно снижается. Агрессивная жидкая среда (водно-воздушная, водно-солевая и т.д.) приводит к эрозии вяжущего, коррозии арматуры, морозному разрушению минерального материала.

Способ «залечивания» трещин и преследуемая им цель выбираются исходя из многих соображений. Оценивается рентабельность технологии, простота её применения, эффективность и т.п. В пользу инъекционного метода, помимо возможности восстанавливать гидроизоляцию практически на любом участке и глубине бетонной конструкции, также может говорить способность определенных видов составов восстанавливать еще и механические свойства обрабатываемого элемента.

Например, инъекции на основе эпоксидных смол не просто блокируют миграцию жидкости через трещину, а еще и предотвращают дальнейшее развитие разлома, прочно склеивая его края. Нагнетание эпоксидной смеси осуществляется посредством двухкомпонентного насоса, который одновременно подает смолу и катализатор (отвердитель) из раздельных емкостей, приготавливая из них рабочий раствор в смешивающей насадке.

Заделка трещин в бетонных конструкциях не подверженным деформационным нагрузкам также может выполняться с использованием инъекционных материалов на основе цементов либо силикатов. После завершения процессов гидратации они не только восстанавливают водонепроницаемость обрабатываемого участка, но и значительно упрочняют его.

Результат инъектирования стены в подвале

Особенности инъецирования трещин в бетоне

Нагнетание жидкого гидрофобизатора осуществляется под значительным давлением, достигающим 400 кг/см 2 . Поэтому, чтобы предотвратить выдавливание рабочего раствора наружу, трещину необходимо надежно запечатать с лицевой поверхности. Для этого её расшивают штрабой, сечением примерно 20*20 мм. Затем, канаву заполняют подходящим ремонтным цементно-полимерным составом с высокими показателями адгезии и водоупорности. Вдоль трещины с обеих сторон с отступами по 100 мм в шахматном порядке бурят шпуры. Отверстия размещают с шагом 300 мм, а их проходку ведут наклонно (45-60 0 ) к зоне разлома.

Шпуры тщательно очищают от шлама при помощи воды под давлением либо сжатого воздуха (особенно для эпоксидных составов), в них монтируются пакеры и закачивается целевая смесь.

Швы бетонирования (рабочие, холодные, деформационные)

Процесс сооружения бетонных конструкций всегда сопровождается операциями по созданию швов и стыков её частей. Подобные участки всегда являются зонами риска для проникновения через них влаги. Поэтому, независимо от выбранного способа гидрозащиты всей конструкции, сопряжения её элементов всегда нуждаются в особом внимании.

Выбор способа и материала для гидроизоляции шва должен учитывать целый ряд факторов в условиях его работы. В частности, для инъекционного метода в первую очередь важны:

  • подвижность шва и интенсивность нагрузки. Различают две основные группы швов – неподвижные (холодные, рабочие) и подвижные или деформационные (усадочные, осадочные, температурные);
  • агрессивность и гидравлический напор жидкости;
  • диапазон изменения температур эксплуатации.

Неподвижные швы

образуются в места непредвиденных либо технологических перерывов в формовке монолита. Герметичность подобных участков преимущественно обеспечивается еще на этапе возведения бетонной конструкции с использованием разбухающих бентонитовых шнуров либо безусадочных цементных смесей. Однако, если указанные мероприятия не проводились, либо оказались недостаточными, прибегают к технологии инъектирования проблемных зон.

Инъекционная гидроизоляция холодных сопряжений частей бетонного сооружения эффективно выполняется закачкой в массив строительного материала гелями на основе полиуретановых смол. Они относятся к категории гидроактивных вспенивающихся расширяющихся смесей, что позволяет успешно изолировать швы, даже с активными протечками воды. Полиуретановые гели имеют одно из лучших соотношений цена/качество, устойчивы к резким перепадам температуры, воздействию агрессивных жидкостей, высоким физическим нагрузкам. При этом они обладают не всегда достаточной эластичностью для обработки швов с высокой деформационной нагрузкой, для которых лучше выбирать акрилатные гели.

Подвижные швы

предусматриваются проектным решением для снятия в конструкциях температурных либо механических напряжений. Они могут создаваться как еще на этапе монолитных работ, так и после их завершения. Так, распространенной практикой для стыков подверженных деформациям является закладка в них гидрошпонок на стадии формовки бетона. Снятие напряжений в уже затвердевшем растворе осуществляется путем нарезки швов с заполнением их эластичными герметиками.

Методика инъекций герметизирующего материала (акрилатных гелей) для подобных участков может также предложить эффективные решения и для рабочей гидрозащиты, и для ремонтно-восстановительной. Технология доставки гидрофобизатора в обрабатываемую зону подвижного (неподвижного) шва принципиально не отличается от аналогичной для герметизации трещин. Однако нарезаемые деформационные швы, до начала подачи рабочего раствора, запечатываются не жесткими составами, а эластичными профилями и герметиками.

Трещины в кирпичной кладке

Благодаря своей природной пористой структуре кирпич сам по себе уже не является надежным водоупором. Конструкции из него, контактирующие с влажной средой, нуждаются в обязательных гидроизоляционных мероприятиях. При этом ситуация с проникновением сырости через кирпичные стены может усугубляться появлением трещин в кладке или фундаментах под ней. Методы инъекционной гидрозащиты в подобных случаях могут оказаться единственными экономически и практически оправданными для устранения возникших проблем.

Выбор оптимальной технологии инъекций, так же как и для бетонных конструкций, определяют исходя из местных условий и требований к конечному результату. Например, при устранении активных или объемных течей могут использоваться акриловые или полиуретановые гели, полимеризация которых происходит во влажной среде. Примерами таких гидроактивных полиуретановых влагоотверждаемых смол со сверхнизкой вязкостью могут выступать Аквидур ТТ НПО «СТРИМ», а также ПенеСплитСил (PeneSplitSeal) компании Пенетрон. Нагнетание рабочего раствора для блокировки протечки осуществляется постепенно, в несколько этапов. На каждом из них контролируют его результативность. После завершения процесса герметизации пакеры извлекаются из шпуров, а оголовки отверстий заделываются гидроцементной смесью.


Видео об инъектировании кирпичной стены в подвале

Кирпичные стены также часто подвергаются негативному воздействию капиллярного подъёма влаги. Подобная ситуация требует восстановления либо создания отсечной гидроизоляции на уровне отмостки здания либо верха цоколя фундамента. Введение инъекционных составов в кирпичный массив в этом случае осуществляется сплошным фронтом по линии горизонтальной плоскости.

Ссылка на основную публикацию
Adblock
detector